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Abstract. We consider a geometric matching of two realistic terrains,
each of which is modeled as a piecewise-linear bivariate function. For two
realistic terrains f and g where the domain of g is relatively larger than
that of f , we seek to find a translated copy f ′ of f such that the domain
of f ′ is a sub-domain of g and the L∞ or the L1 distance of f ′ and g
restricted to the domain of f ′ is minimized. In this paper, we show a
tight bound on the number of different combinatorial structures that f
and g can have under translation in their projections on the xy-plane. We
give a deterministic algorithm and a randomized algorithm that compute
an optimal translation of f with respect to g under L∞ metric. We also
give a deterministic algorithm that computes an optimal translation of f
with respect to g under L1 metric.

1 Introduction

In the terrain matching problem, we are given two terrains and the goal is
to measure the similarity between two terrains. Terrain matching has been
extensively used for various applications to locate the exact position of objects
such as aircrafts [7,13,18], cruise missiles [3,9], underwater vehicles [16,19,20],
rockets and robots for space missions [10,17].

In these applications, terrain matching is used to specify the location of an
object by constructing local terrain data around the object and finding the most
similar sub-terrain in the existing global terrain data. A typical method to find
the most similar sub-terrain is feature matching. Well known examples of features
are linear edges, 2D curves, contour lines and Gaussian curvatures [7,9,13]. These
features describe some characteristics of a terrain, but may not fully reflect the
geometric properties of the terrain.

Moroz and Aronov [15] and Agarwal et al. [1] dealt with terrain matching as
a geometric matching problem. They defined a terrain f as a piecewise-linear
bivariate function f : Df → R, where Df is a triangulated domain of f in the
xy-plane. For each vertex of the triangulation, the function value f(v) is given,
and the other values are given by the linear interpolation within each triangle.
They gave algorithms that compute exact L∞, L1 (under vertical scaling and
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translation) and L2 distances between two terrains, respectively. These algorithms
only handle two input terrains defined on the same domain, and to the best of
our knowledge, there is no research about matching two triangulated terrains
defined on different domains.

We deal with a geometric matching problem concerning two terrains defined
by the piecewise-linear bivariate functions on triangulated domains, but in
this paper we do not require that two terrains have the same domain. Let
Df + t = {p + t | p ∈ Df} be a translated image of Df by a translation vector
t ∈ R2. We define the distance between two terrains as follows.

Definition 1. Let f : Df → R and f ′ : Df ′ → R be two terrains such that
Df ′ = Df + t for a translation vector t ∈ R2. The distance d∞(f, f ′) between f
and f ′ under L∞ metric is

min
h∈R

max
p∈Df

|(f(p) + h)− f ′(p+ t)|

and the distance d1(f, f ′) between f and f ′ under L1 metric is

min
h∈R

∫∫
p∈Df

|(f(p) + h)− f ′(p+ t)|dp.

We use two different distances to measure the similarity between two terrains. The
distance d∞ measures the min-max vertical distance under vertical translation h
and the distance d1 measures the minimum volume under vertical translation h.

Our problem can be stated as follows:

Problem (Terrain Matching). Given two terrains f : Df → R and g : Dg →
R, find an optimal translation vector t∗ such that D∗ = Df + t∗ ⊂ Dg and the
distance between f and g�D∗ is minimized, where g�D∗ denotes the restriction of
g to D∗.

In many computational geometric problems, there is a certain gap between
the worst-case computational complexity of an algorithm and the actual running
time of the algorithm on inputs from real world applications [14]. The same
phenomenon happens for the terrain matching problem. So, it is an important
issue to develop an algorithm that is efficient for a realistic input. We assume
that our input terrains satisfy some realistic constraints. A realistic terrain is a
terrain with three additional constraints. In the following definition, k and r are
assumed to be positive constants.

Definition 2 ([14]). A terrain f : Df → R is a realistic terrain if it satisfies
the followings:

(a) The triangulation of Df is a k-low-density triangulation.

(b) For the smallest rectangle that contains Df , the ratio of the length of a short
side to the length of a long side is 1 : r.

(c) The longest edge in the triangulation of Df is at most constant times as long
as the shortest one.
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A planar triangulation T is called a k-low-density triangulation if for any axis-
aligned square R with side length s, the number of edges of T with length greater
than or equal to s that intersect R is at most k. Also, by Definition 2(b), we
assume that the domain of a realistic terrain is an axis-aligned rectangle with
constant side-length ratio.

1.1 Our results

We present first algorithms for matching two triangulated terrains with differ-
ent domains and also show geometric properties between two realistic terrains.
To solve the terrain matching problem under L∞ metric, we first gather two-
dimensional translation vectors t such that Df + t ⊂ Dg. Then, we subdivide
the set of translation vectors into a partition such that the translation vectors t
of a cell of the partition correspond to “one combinatorial structure” between
two triangulations of Df + t and Dg. For each cell of the partition, we can find a
translation vector that minimizes the distance among the translation vectors in
the cell by reducing it to a linear programming problem.

To solve the terrain matching problem under L1 metric, we need to treat the
amount of vertical translation h of f explicitly. After we concatenate h as a third
coordinate of the two-dimensional translation vectors t = (tx, ty), we subdivide
the set of three-dimensional translation vectors (tx, ty, h) into a partition such
that the volume function between f and g for the translation vectors (tx, ty, h)
of a cell can be expressed by a single formula. For each cell of the partition, we
find a three-dimensional translation vector that minimizes the distance among
the translation vectors of the cell by using numerical methods.

Our results are twofold: Let m (resp. n) be the number of triangles in the
triangulation of Df (resp. Dg), assuming that m ≤ n. The side lengths of Df
(resp. Dg) are a and ar (resp. a′ and a′r′) for a positive constant r (resp. r′). Let
A = m+ ( a

a′ )
2n.

1. Under L∞ metric,

– We show that the number of different combinatorial structures between
the triangulation of Df and the triangulation of Dg is O(nmA), and this
bound is tight if a′ > 2a.

– We present a deterministic algorithm and a randomized algorithm for
the terrain matching problem. The deterministic algorithm runs in
O(nmA4/3+δ) time using O(n + A2) space for a fixed δ > 0, and the
randomized algorithm runs in O(nmA log n log2A log2 logA) expected
time using O(n+A2) space. The randomized algorithm outperforms the
deterministic algorithm when m = Ω(log3A).

– The time complexity of the randomized algorithm is near linear to the
number of different combinatorial structures. It seems hard to avoid
searching the whole combinatorial structures, so our algorithms run
reasonably fast.

2. Under L1 metric,
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– We show that the number of different formulae of the volume function
defined between f and g is O(nmA4).

– We present a deterministic algorithm for the terrain matching problem
that runs in O(nmA4) time using O(n+A3) space.

The factor A = (m+ ( a
a′ )

2n) is O(m) when m : n ≈ a2 : a′2. This condition
holds when edge lengths of triangles in both realistic terrains are asymptotically
the same. Many real world applications use terrains with this condition to match.
With A = O(m), the running times and the space complexities of our algorithms
are linear to n (except the randomized algorithm); it means that our algorithms
can be used as a query algorithm for finding the most similar part of large terrain
data g for query terrain data f which runs in time linear to the size of the
database.

2 Translation Space under L∞ metric

Let S be a set of translation vectors t that satisfies Df +t ⊂ Dg, i.e., S = {t ∈ R2 |
Df + t ⊂ Dg}. We call S the translation space of f and g. As mentioned before,
our goal is to find an optimal translation vector in S. To find it among infinitely
many translation vectors in S, we need to investigate geometric properties of
input terrains.

Let the triangulations of Df and Dg be Tf and Tg, respectively. In this section,
we show that S can be subdivided into the finite number of cells such that the
interior of each cell induces the same combinatorial structure of the overlay of
the triangulations. Then we show a tight upper bound on the number of the
combinatorially different sets of translation vectors.

2.1 Candidate pairs defining the distance between two terrains

For a translation vector t, let O(f, g, t) be the overlay of Tf + t and Tg where
Tf + t = {p+ t | p ∈ Tf} be a translated image of Tf (Figure 1). The following
lemma shows that there is a vertex v ∈ O(f, g, t) that realizes the distance
between f and g�Df+t

, i.e., d∞(f, g�Df+t
) = |(f(v − t) + h′)− g(v)|, where h′ =

argmin
h∈R

max
p∈Df

|(f(p)+h)−g(p+t)|. Let f [D] = {(x, y, f(p)) | p = (x, y) ∈ D ⊆ Df},
and g[D] = {(x, y, g(p)) | p = (x, y) ∈ D ⊆ Dg}.

Lemma 1. There is a vertex of O(f, g, t) that realizes d∞(f, g�Df+t
) for any

translation vector t ∈ S.

Proof. Assume that none of the vertices of O(f, g, t) realizes d∞(f, g�Df+t
). Let

p ∈ Df be a point that realizes d∞(f, g�Df+t
). There are two possible cases: p+ t

is contained in a cell of O(f, g, t) or in the interior of an edge of O(f, g, t).
Suppose that p+ t is contained in a cell of O(f, g, t). This means that p+ t

lies in the interior of a triangle 4 of Tf + t and in the interior of a triangle 4′
of Tg. In R3, f [4] and g[4′] must be parallel; otherwise, it contradicts the fact
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Tf Tg

O(f, g, t)

Fig. 1. An example of the overlay O(f, g, t).

that p realizes d∞(f, g�Df+t
). Therefore, any vertex v made by the overlay of 4

and 4′ also realizes d∞(f, g�Df+t
), a contradiction.

Suppose that p+ t is contained in the interior of an edge of O(f, g, t). Without
loss of generality, we say that p+ t lies in the interior of a triangle 4 of Tf + t
and in the interior of an edge e of Tg. In R3, f [4] and g[e] are parallel; other-
wise, it contradicts the fact that p realizes d∞(f, g�Df+t

). Therefore, any vertex

v made by the overlay of 4 and e also realizes d∞(f, g�Df+t
), a contradiction

Each vertex of O(f, g, t) corresponds to a vertex-triangle pair or an edge-edge
pair of two triangulations Tf + t and Tg. We define the combinatorial structure
C(t) between Tf and Tg at t ∈ S as the set of these pairs between Tf + t and Tg.

2.2 Subdividing translation space

Now we describe how to subdivide S into cells such that C(t) = C(t′) for any
two translation vectors t and t′ in the interior of a cell. We denote by M the
subdivision. The combinatorial structure corresponding to an edge or a vertex of
M is the union of the combinatorial structures of the adjacent cells of the edge
or the vertex in M.

Let us consider the different combinatorial structures induced by two triangles
4 and 4′ from Tf and Tg, respectively (Figure2(a)). Let S4 = {t ∈ R2 |
(4+ t) ∩4′ 6= ∅} (the gray region in Figure 2(b)). For an edge-edge pair (e, e′)
where e and e′ are edges of 4 and 4′, respectively, the set of translation vectors
t such that e+ t and e′ intersect forms a parallelogram in S4 (Figure 2(b)). For a
vertex-triangle pair (4, v) where v is a vertex of 4′, the set of translation vectors
t such that 4+ t and v intersect forms a triangle. Similarly, for a vertex-triangle
pair (v,4′) where v is a vertex of 4, the set of translation vectors such that
v + t and 4′ intersect forms a triangle. We say that the parallelogram in S4 is
defined by an edge-edge pair and the triangle in S4 is defined by a vertex-triangle
pair. The overlay of the parallelograms and triangles defined by all edge-edge
and vertex-triangle pairs between 4 and 4′, respectively, subdivides S4 into
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cells such that the interior of each cell corresponds to exactly one combinatorial
structure between 4 and 4′ (Figure 2(c)).

4′4

(a) (b) (c)

e

e′

Fig. 2. (a) Two triangles 4 and 4′, and two edges e and e′ of them. (b) The set of
translation vectors t such that e + t ∩ e′ 6= ∅ in S4 (darker parallelogram). (c) The
resulting subdivision of S4.

The subdivision M induced by Tf and Tg is constructed as follows. An edge-
edge pair and a vertex-triangle pair between Tf and Tg define a parallelogram
and a triangle in S, respectively. The subdivisionM is constructed by overlaying
the parallelograms and the triangles. In the following lemma, we show that it
suffices to overlay the triangles to construct M.

Lemma 2. The subdivisionM can be constructed by overlaying the triangles in
S defined by all the vertex-triangle pairs between Tf and Tg.
Proof. For a parallelogram in S defined by an edge-edge pair (e, e′), we will show
that the edges of the parallelogram are contained in the overlay of the triangles
defined by the vertex-triangle pairs.

For a translation vector t in each edge of the parallelogram, a vertex of e+t lies
on e′, or a vertex of e′ lies on e+t. Let us consider an edge ev of the parallelogram
which consists of the translation vectors t such that a vertex v of e+ t lies on
e′. For a triangle 4 in Tg that has e′ as an edge, the vertex-triangle pair (v,4)
defines a triangle in S. By the way to choose v and 4, a translation vector of ep
is contained in an edge of the triangle defined by the vertex-triangle pair (v,4).
Similarly, the remaining edges of the parallelogram are edges of triangles defined
by vertex-triangle pairs.

We propose the simplified way to construct M as follows. The triangle in S
defined by a vertex of Tf and a triangle 4 of Tg is a translated copy of 4. For a
vertex v of Tf , the set of triangles in S that are defined by v and the triangles in
Tg forms a translated copy of Tg. Let Tg(v) be the translated copy of Tg formed
by a vertex v of Tf . The triangle in S defined by a vertex of Tg and a triangle 4
of Tf is a translated copy of −4, where −4 is the reflection through the origin
of 4. For a vertex u of Tg, the set of triangles in S that are defined by u and the
triangles in Tf forms a translated copy of −Tf , where −Tf is a set of −4 for all
4 ∈ Tf . Let Tf (u) be the translated copy of −Tf formed by a vertex u of Tg. By
Lemma 2, M is the overlay of Tf (u) and Tg(v) for all vertices u of Tg and v of
Tf , restricted to S.
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2.3 Complexity of the subdivision M

We analyse the number of cells in M for two terrains. Since M is a planar
subdivision, we can bound the number of cells by bounding the number of
vertices of M.

For two terrains, not necessarily realistic, the subdivision of their translation
space has O(n2m2) cells; M is the overlay of Tf (u) and Tg(v) for all vertices u
of Tg and v of Tf , restricted to S. So, M is the overlay of O(nm) edges and has
O(n2m2) cells. There is an example of two triangulations Tf and Tg such thatM
has Ω(n2m2) cells (Figure 3), so the bound above is tight. However, the worst

Tf Tg

Fig. 3. Two triangulations Tf and Tg realizing Ω(n2m2) different combinatorial struc-
tures.

case scenario hardly happens in real world applications. We are going to present
a better bound for realistic terrains. First of all, we introduce some properties of
a realistic terrain.

Lemma 3 ([14]). Let f : Df → R be a realistic terrain such that Tf has n
triangles and the side lengths of Df are a and ar for a positive constant r. Then
the following conditions hold.

– All edges in Tf have length Θ( a√
n

).

– Let R be a rectangle that intersects Tf , of which both side lengths are Ω( a√
n

),

and that has total area R. Then R intersects O(Ra2n) triangles of Tf .

Next, the following lemma describes an upper bound of the number of cells in
M when f and g are realistic terrains.

Lemma 4. Let f : Df → R and g : Dg → R be the two realistic terrains such
that Tf (resp. Tg) has m (resp. n) triangles and the side lengths of Df (resp. Dg)
are a and ar (resp. a′ and a′r′) for a positive constant r (resp. r′). Then, the
number of cells in the subdivisionM is O(nm(m+ ( a

a′ )
2n)), and the number of

pairs in a combinatorial structure is O(m + ( a
a′ )

2n). When edge lengths of Tf
and Tg are asymptotically same, i.e., a√

m
= Θ( a′√

n
), the number of cells becomes

O(nm2).
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Proof. There are two types of vertices of M: either vertices of Tf (u) and Tg(v)
or intersections between edges in Tf (u) and Tg(v), for all vertices v ∈ Tf and
u ∈ Tg. It is easy to count the number of vertices of the first type. The total
number of vertices of Tf (u) and Tg(v) for all vertices v ∈ Tf and u ∈ Tg is O(nm).
The vertices of the second type can be divided into three subtypes: intersections
made by Tg(v) and Tg(v′), Tf (u) and Tf (u′), and Tf (u) and Tg(v), for all vertices
v, v′ ∈ Tf and u, u′ ∈ Tg.

Intersections made by Tg(v) and Tg(v
′) There are

(
m
2

)
= O(m2) ways to

choose v and v′ from the vertices of Tf . By Lemma 3, the length of the longest

edge of Tg is smaller than a′√
n
i, for a constant i, so any edge of Tg(v) can be

contained in a square R of side length a′√
n
i. Again by Lemma 3, R intersects O(1)

triangles in Tg(v′), so an edge of Tg(v) also intersects O(1) edges in Tg(v′). The
number of edges in Tg(v) is O(n), so Tg(v) and Tg(v′) have O(n) intersections.
Therefore, the total number of intersections of this type is O(nm2).

Intersections made by Tf(u) and Tf(u
′) There are

(
n
2

)
= O(n2) ways to

choose u and u′ from the vertices of Tg. However, not all of the pairs of Tf (u) and
Tf (u′) have an intersection. For Tf (u) defined by a vertex u in Tg, let us count the
number of vertices u′ in Tg such that Tf (u) intersects Tf (u′). The relative position
between Tf (u) and Tf (u′) is the same to the relative position between u and u′.
So, Tf (u) and Tf (u′) have an intersection if the distance between u and u′ is O(a).
By Lemma 3, the number of vertices of Tg contained in a square of side length
O(a) centered at u is O(( a

a′ )
2n). The number of intersections between Tf (u) and

Tf (u′) is O(m) by an analogous argument in the first subcase. Therefore, the
total number of intersections of this type is O(( a

a′ )
2n2m).

Intersections made by Tf(u) and Tg(v) There are O(nm) ways to choose
u from the vertices of Tg and v from the vertices of Tf . By Lemma 3, the length
of the longest edge of Tf is smaller than a√

m
i for a constant i, so any edge of

Tf (u) can be contained in a square R of side length a√
m
i. Again by Lemma 3, R

intersects O(( a
a′ )

2 n
m ) triangles in Tg(v), so any edge of Tf (u) intersects O(( a

a′ )
2 n
m )

edges in Tg(v). The number of edges in Tf (u) is O(m), so Tf (u) and Tg(v) have
O(( a

a′ )
2n) intersections. Therefore, the total number of intersections of this type

is O(( a
a′ )

2n2m).

For any case, the number of intersections is O(nm(m+ ( a
a′ )

2n)). For t ∈ S,
the number of pairs in C(t) can be shown by the similar argument: for t ∈ S,
the pairs of C(t) can be computed by overlaying Tf + t and Tg, so there are
O(m+ ( a

a′ )
2n) pairs.

If f and g are realistic terrains and Dg is “larger enough” than Df , we can
show that the bound in Lemma 4 is tight by an example. We assume that Df
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is a square of side length a and Tf is defined on a regular grid which is rotated
slightly in counterclockwise orientation (Figure 4(a)). Tf consists of m

2 grid cells
and each cell is triangulated by one of the diagonal edges of the cell. Analogously,
we assume that Dg is a square of side length a′ > 2a and Tg is defined on a
regular grid which is rotated slightly in clockwise orientation (Figure 4(b)). Tg
consists of n

2 grid cells and each cell is triangulated by one of its diagonal edges.
For simplicity, we consider the squares of the grids, instead of the triangles. It
means that we count the number of combinatorial structures between subsets of
Tf and Tg.

First, let us count the number of intersections made by Tg(v) and Tg(v′) for
vertices v, v′ ∈ Tf . We have

(
m
2

)
= Ω(m2) pairs of Tg(v) and Tg(v′) and each pair

makes at least Ω(n× ( a′−a
a′ )2) = Ω(n) intersections because the overlaying area

of Tg(v) and Tg(v′) is at least (a′ − a)2. So, the number of intersections of this
type is Ω(nm2).

Next, let us count the number of intersections made by Tf (u) and Tf (u′)
for vertices u, u′ ∈ Tg. We assume that ( a

a′ )
2n is larger than a positive constant

i. If ( a
a′ )

2n is smaller than a positive constant i, the bound of the number of
cells of M in Lemma 4 becomes O(nm(m + i)) = O(nm2) and the number
of intersections made by Tg(v) and Tg(v′) for vertices v, v′ ∈ Tf is already

Ω(nm2), we are done. By the assumption a′ ≥ 2a, there are Ω(( a
′−a
a′ )2n) = Ω(n)

vertices u ∈ Tg that satisfies the following condition: for a chosen vertex u,
there are Ω(( a

a′ )
2n) vertices u′ of Tg such that Tf (u) and Tf (u′) make Ω(m)

intersections. Note that Tf (u) and Tf (u′) make Ω(m) intersections if the distance
between u and u′ is smaller than a/2. It means that for the chosen vertex u, the
number of intersections made by Tf (u) is Ω(( a

a′ )
2nm). Therefore, the number of

intersections of this type is Ω(( a
a′ )

2n2m). In total, the number of vertices of M
is Ω(( a

a′ )
2n2m+ nm2) = Ω(nm(m+ ( a

a′ )
2n)).

(a) (b)

a

a

a′

a′

Tf Tg

Fig. 4. An example of Tf and Tg that induce Ω(nm(m+( a
a′ )

2n)) different combinatorial
structures.

We summarize the results of this section in the following theorem.

Theorem 1. Let f : Df → R and g : Dg → R be two realistic terrains such
that Tf (resp. Tg) has m (resp. n) triangles and the side lengths of Df (resp.
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Dg) are a and ar (resp. a′ and a′r′) for a positive constant r (resp. r′). The
number of different combinatorial structures between Tf and Tg is O(nmA), where
A = m+ ( a

a′ )
2n. This bound is tight if a′ > 2a.

3 Geometric Matching Algorithms under L∞ metric

In this section, we first show how to compute M and the combinatorial struc-
tures corresponding to the interiors of the cells. We find an optimal translation
vector t∗ ∈ c for each cell c in M by considering the combinatorial structure
corresponding to the interior of c. For two translation vectors t in the interior
of c and t′ on the boundary of c, every vertex of O(f, g, t′) is an intersection
induced by an edge-edge pair or a vertex-triangle pair in C(t), so it is enough
to consider the combinatorial structure corresponding to the interior of c. From
now on, the term “combinatorial structure of a cell” means C(t) for a translation
vector t in the interior of the cell.

We observe that the combinatorial structures of the adjacent cells of M have
only O(1) different edge-edge or vertex-triangle pairs, so they can be computed
efficiently. We present a deterministic algorithm and a randomized algorithm to
compute an optimal translation vector.

3.1 Construction of M

The subdivision M is constructed by overlaying Tf (u) and Tg(v) for all vertices
v ∈ Tf and u ∈ Tg restricted to S as explained in Section 2.2. The total number
of the edges to overlay is O(nm). The overlay of N edges can be constructed
in O(N logN + K) time using O(N + K) space [2], where K is the number
of intersections. In our case, N = O(nm) and K = O(nm(m + ( a

a′ )
2n)) by

Theorem 1, so M can be constructed in O(nm(m+ ( a
a′ )

2n+ log n)) time using
O(nm(m+ ( a

a′ )
2n)) space.

However, it is not necessary to maintain the whole subdivision M; after
finding an optimal translation vector among the translation vectors in a cell of
M, the cell is not necessary any more. So we only maintain a small part ofM to
reduce the space. We divide S into a regular grid of length ` and then compute
cells of the subdivision M that intersect each of the grid cells, one by one.

For a grid cell c, every triangle of Tf (u) and Tg(v) which intersect c can be
obtained by maintaining regular grids of length ` for Tf and Tg. From Tf (u) for
vertices u ∈ Tg, the set of triangles intersecting the grid cell c can be computed
in O(( `a′ )

2nm) time: there are O(( a
a′ )

2n) copies that have triangles intersecting

c and each of such copies has O(( `a )2m) triangles intersecting c by Lemma 3.
Similarly, from Tg(v) for vertices v ∈ Tf , the set of triangles intersecting the grid
cell c can be computed in O(( `a′ )

2nm) time: there are O(m) copies and each of

such copies has O(( `a′ )
2n) triangles intersecting c by Lemma 3.

Each grid cell is a square of side length `, so the number of cells of M
that intersect a grid cell is O(( `a′ )

2nm(m+ ( a
a′ )

2n)). This bound can be proved

by the similar argument in Lemma 4. There are O(( `a′ )
2nm) edges to overlay
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and O(( `a′ )
2nm(m + ( a

a′ )
2n)) intersections, so these cells of M for a grid cell

can be computed in O(( `a′ )
2nm log(( `a′ )

2nm) + ( `a′ )
2nm(m+ ( a

a′ )
2n)) time using

O(n+m+ ( `a′ )
2nm(m+ ( a

a′ )
2n)) space [2].

If we use a grid with too small ` then the number of grid cells that intersect
a cell of M can be arbitrarily large, so it increases time to solve the problem. To
avoid that, we set ` to be longer than the asymptotic edge lengths of Tf and Tg,
Θ( a√

m
+ a′√

n
). With this `, the number of grid cells that intersect a cell of M is

O(1), and the time and space complexities to compute M cell by cell of the grid
become O(nm(m+ ( a

a′ )
2n)) and O(n+ (m+ ( a

a′ )
2n)2), respectively.

Lemma 5. For two realistic terrains, M can be reported cell by cell of a grid
of length ` = Θ( a√

m
+ a′√

n
) in O(nmA) time using O(n + A2) space, where

A = m+ ( a
a′ )

2n.

After constructing the cells ofM in a grid cell, we compute the corresponding
combinatorial structure of each cell of M. The straightforward way is computing
the combinatorial structure of each cell separately, but this is inefficient because
the combinatorial structures of the adjacent cells of M are similar as in the
following.

Let ci and cj be two adjacent cells of M with a common edge e, and Ci and
Cj be the corresponding combinatorial structures, respectively. Without loss of
generality, we can say that e is a part of an edge of a triangle in S defined by a
vertex v of Tf and a triangle 4 of Tg. Let t be a translation vector in the interior
of e. In the overlay of Tf + t and Tg, v + t lies on the interior of an edge of 4
and v is the unique vertex that lies on an edge of the overlay of Tf + t and Tg
by the construction. It means that Ci and Cj have at most O(1) different pairs
because of the k-low-density assumption (Definition 2(a)) which implies that the
degree of each vertex of Tf and Tg is at most k.

Observation 1 The combinatorial structures of two adjacent cells ofM have
k = O(1) different pairs.

Note that the sequence of cells can be obtained by a standard DFS(depth first
search) scheme.

3.2 A deterministic geometric matching algorithm

We first consider a deterministic algorithm to compute an optimal translation
vector of a cell in M. Computing an optimal translation vector of a cell can be
reduced to a linear programming in R4 as follows. We use w to represent the
fourth coordinate of R4.

For an edge-edge pair (e, e′) of a combinatorial structure of a cell c in M,
let (0, 0, v(t, h)) be a vertical translation vector with respect to t = (tx, ty) ∈ R2

and h ∈ R such that f [e] + (tx, ty, h) + (0, 0, v(t, h)) and g[e′] are contained in
a common plane in R3. For a translation vector t ∈ c, let p be the intersection
point of e+ t and e′. Then, |v(t, h)| = |(f(p) + h)− g(p+ t)|. The set of points
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(tx, ty, h, |v(t, h)|) in R4 is the upper envelope of two hyperplanes: two sets of
points (tx, ty, h, v(t, h)) and (tx, ty, h,−v(t, h)) for t = (tx, ty) ∈ R2 and h ∈ R.
For a vertex-triangle pair of a combinatorial structure, we can construct the
upper envelope of two hyperplanes in R4 analogously.

For a cell c in M and a translation vector t ∈ c, we construct a set of
hyperplanes in R4 corresponding to the pairs in a combinatorial structure C(t) as
described. The problem of finding an optimal translation vector t for c reduces to
the linear programming problem of finding a point q of the smallest w-coordinate
in the upper envelope of the hyperplanes in R4 for (qx, qy) ∈ c, where qx and qy are
the x- and y-coordinates of q, respectively. Note that the restriction (qx, qy) ∈ c
can be described by a set of linear inequality constraints. The translation vector
(qx, qy) is an optimal translation vector for c.

Matoušek and Schwarzkopf [12] gave a dynamic data structure supporting
a linear programming in R4. With N hyperplanes, the data structure can be
constructed in O(N4/3+δ) deterministic time and space for any fixed δ > 0. Also,
both update time (insertions and deletions of hyperplanes) and query time are
O(N1/3+δ) amortized time.

The overall strategy is as follows. We subdivide S by a regular grid of length
` = Θ( a√

m
+ a′√

n
) and treat the cells one by one. For a grid cell, we compute the

corresponding part of M and a sequence of adjacent cells in M as described in
Section 3.1. Next, we build the data structure [12] with hyperplanes in R4 for
the combinatorial structure of the first cell of the sequence. We find the lowest
point in the upper envelope of the hyperplanes. For the rest cells in the sequence,
we update the data structure for the corresponding combinatorial structure, and
then find the lowest point. Note that the number of updates for a cell is O(1) by
Observation 1 if we follow the sequence of adjacent cells. We repeat this until the
end of the sequence. By Lemma 4, the number of edge-edge and vertex-triangle
pairs in a combinatorial structure is O(m+ ( a

a′ )
2n) and the number of different

combinatorial structure is O(nm(m+( a
a′ )

2n)). The following theorem summarizes
the overall time and space complexity.

Theorem 2. Let f : Df → R and g : Dg → R be the two realistic terrains such
that Tf (resp. Tg) has m (resp. n) triangles and the side lengths of Df (resp.
Dg) are a and ar (resp. a′ and a′r′) for a positive constant r (resp. r′). We can
compute an optimal translation vector t∗ such that Df + t∗ ⊂ Dg and the distance
under L∞ metric between f and g�D∗ is minimized in O(nmA4/3+δ) time with
O(n+A2) space for any fixed δ > 0 and A = m+ ( a

a′ )
2n.

3.3 A randomized geometric matching algorithm

In this section, we propose a randomized algorithm for the reduced problem
described in Section 3.2. We first present a decision algorithm to decide the
existence of a point of the upper envelope of hyperplanes in R4 such that the
w-coordinates of the point is smaller than an input value. Next, we propose a
randomized approach to compute an optimal translation vector.
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As described in Section 3.2, we construct the set of hyperplanes in R4 corre-
sponding to the combinatorial structure of a cell c ofM and the set of hyperplanes
corresponding to the boundary edges of c. A decision version of finding the lowest
point in the upper envelope of hyperplanes can be stated as follows: given δ > 0,
is there a point in the upper envelope of hyperplanes whose w-coordinate is
smaller than δ?

We check whether there is such a point in the upper envelope by introducing
a new hyperplane Hδ : w = δ. If the upper envelope has such a point then
the intersections of Hδ and each ‘upper half-space’ of the hyperplanes have a
non-empty common intersection in Hδ. This problem can be reduced to a linear
programming in R3.

Eppstein [6] gave a semi-online data structure for a linear programming in
R3. The data structure supports update and query in O(log2N log2 logN) time
if one knows the updating sequence of length N in advance. Again, we subdivide
S by a regular grid of length ` = Θ( a√

m
+ a′√

n
) and treat cell by cell of the grid.

For a grid cell, we compute the corresponding part of M and a sequence of
adjacent cells in M as described in Section 3.1. We can construct the update
sequence of half-spaces for a grid cell and the length of the update sequence is
O(( `a′ )

2nm(m+ ( a
a′ )

2n)) = O((m+ ( a
a′ )

2n)2).

Lemma 6. For given δ > 0, we can solve the decision problem for each cell ofM
in O(log2A log2 logA) amortized time where A = m+ ( a

a′ )
2n. Therefore, we can

find translation vectors t such that d∞(f, g�Df+t
) ≤ δ in O(nmA log2A log2 logA)

time.

Lemma 6 means that for a given threshold value, we can find subdomains
D of Dg such that g defined on D is “similar enough” to f . Next, we present
how to use the solutions of the decision problems to find an optimal translation
vector. First we randomly choose one cell c of M and compute the minimum
distance δ between f and g for the combinatorial structure of c by solving a
linear programming [11]. With this δ, we solve the decision problem for each cells
ofM and find cells which realize the distance smaller than δ. We can expect that
only constant fraction of the number of the cells realize the distance smaller than
δ. We repeat this procedure recursively with a new distance δ′ computed from
one of the cells decided as ‘yes’ from the previous recursive step until we find a
cell which realizes the minimum distance. The expected number of recursion is
O(log(#cells)) = O(log(nm(m+( a

a′ )
2n))) = O(log n). We summarize this section

in the following theorem.

Theorem 3. Let f : Df → R and g : Dg → R be the two realistic terrains such
that Tf (resp. Tg) has m (resp. n) triangles and the side lengths of Df (resp. Dg)
are a and ar (resp. a′ and a′r′) for a positive constant r (resp. r′). We can compute
an optimal translation vector t∗ such that Df + t∗ ⊂ Dg and the distance under
L∞ metric between f and g�D∗ is minimized in O(nmA log n log2A log2 logA)
expected time with O(n+A2) space where A = m+ ( a

a′ )
2n.
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4 Geometric Matching Algorithm under L1 metric

In this section, we solve the terrain matching problem under L1 metric. To
compute the distance between two terrains under L1 metric, we need to compute
the volume function between two terrains. The volume function of two terrains
is a sum of volume functions between pairs of triangles, so we need to compute
the volume functions between pairs of triangles.

Lemma 1 shows that the distance between two terrains under L∞ metric is
decided by an edge-edge pair or a vertex-triangle pair. Let t be a translation
vector in S and C(t) be the corresponding combinatorial structure. From the
edge-edge and vertex-triangle pairs of C(t), we can determine intersecting pairs
of triangles (4,4′) where 4 ∈ Tf and 4′ ∈ Tg. Note that only these pairs of
triangles can have non-zero volume between f [4] and g[4′]. Therefore, we can
use M and the corresponding combinatorial structures to get different pairs of
triangles that can have non-zero volume between them. Lemma 4 shows that
there are O(m+ ( a

a′ )
2n) edge-edge and vertex-triangle pairs in a combinatorial

structure. It means that there are O(m + ( a
a′ )

2n) triangle pairs that realize
non-zero volume between them for a combinatorial structure.

However, for a fixed two-dimensional translation vector t, the volume function
between a pair of triangles is not described as a single formula. The example
below shows that for a fixed set of edge-edge and vertex-triangle pairs, there are
many different formulae for the volume function between a pair of triangles. To

Fig. 5. Three different formulae for the volume function between two triangles.

get a single formula for the volume function, we need to consider the amount
of vertical translation h of f along with the translation vector t = (tx, ty) ∈ S.
If we concatenate h to the translation vector t = (tx, ty) as a third coordinate,
then a vertical prism {(tx, ty, h)|h ∈ R} in R3 over each cell of M can be seen
as all possible vertical translations for the pairs of triangles corresponding to
the combinatorial structure of the cell. We subdivide the vertical prisms such
that the volume function between each pair of triangles is described as a single
formula within a cell of the subdivision.

Each pair of triangles (4,4′) divides the vertical prism into three parts. Each
of the three parts corresponds to the relative position of two triangles f [4] and
g[4′]: f [4] lies above g[4′], f [4] lies below g[4′], and f [4] intersects g[4′].
These three parts in the prism is defined by two planes in R3. Therefore, the
desired subdivision of a vertical prism is a subdivision of O(m+ ( a

a′ )
2n) planes
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in R3 restricted to the vertical prism. The number of cells in a vertical prism is
O((m+ ( a

a′ )
2n)3) and it can be computed in the same time [5].

For the three-dimensional translation vectors (tx, ty, h) in each cell of the
vertical prism, the volume function between a pair of triangles is determined as
a single formula which is a constant degree polynomial of tx, ty, and h, and the
sum of the formulae is also a constant-degree polynomial of tx, ty, and h. For
each cell of the vertical prism, a three-dimensional translation vector that realize
the minimum volume can be found by using numerical methods in O(|C|) time,
where |C| is the complexity of the cell. Also, for two adjacent cells of the vertical
prism, only O(1) pairs of triangles have different formulae. So the formula of
the volume function of an adjacent cell can be derived in O(1) time. There are
O(nm(m+ ( a

a′ )
2n)4) cells and their total complexity is also O(nm(m+ ( a

a′ )
2n)4).

Therefore, the translation vector t ∈ S and the amount of vertical translation
h that minimize the L1 distance between f and g�Df+t

can be computed in

O(nm(m+ ( a
a′ )

2n)4) time.

To reduce the space complexity, we apply the same approach used in Section
3.1. For ` = Θ( a√

m
+ a′√

n
), we subdivide S by a regular grid of length ` and

treat the subdivision M cell by cell of the grid. For a grid cell, we compute
corresponding part of M. For the cells of M in the grid cell, we maintain only
one vertical prism. So, the space complexity is bounded by O(n+ ( `a′ )

2nm(m+
( a
a′ )

2n) + (m+ ( a
a′ )

2n)3) = O(n+ (m+ ( a
a′ )

2n)3). We summarize this subsection
in the following Theorem.

Theorem 4. Let f : Df → R and g : Dg → R be the two realistic terrains such
that Tf (resp. Tg) has m (resp. n) triangles and the side lengths of Df (resp.
Dg) are a and ac (resp. a′ and a′c′) for a positive constant c (resp. c′). We
can compute an optimal translation vector t∗ such that Df + t∗ ⊂ Dg and the
distance under L1 metric between f and g�D∗ is minimized in O(nmA4) time
using O(n+A3) space, where A = m+ ( a

a′ )
2n.

5 Experiment

Computing an optimal translation vector of a cell can be reduced to the linear
programming mentioned in Section 3.2. In our implementation of the geometric
matching algorithm under L∞ metric, we maintain combinatorial structures
and compute an optimal translation vector for each cell separately. We used an
algorithm to solve the linear programming that runs in expected linear time to
the number of the planes [11]1. While solving the linear programming in a cell,
we stop the procedure when the solution becomes larger than the best solution of
cells that already passed. The worst-case time complexity of this implementation
is expected O(nmA2) as the number of constraints of each linear programming
is O(A), where A = m+ ( a

a′ )
2n.

1 A dynamic data structure [12][6] is not used due to technical difficulties.
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Fig. 6. The input domain terrain and the input patch terrain (n = 8000,m = 40).

Experimental settings

The inputs of our experiments are a relatively large terrain and a small patch
terrain. The number of triangles of the domain terrain is n, and that of the patch
terrain is m. In our experiment, synthetic terrains are used to be inputs. The
terrains are first generated using a ridged multifractal terrain model [4] with
standard parameters, and simplified by quadric based edge collapse decimation
[8] to get the specific numbers of triangles. The ridged multifractal terrain model
is known to well describe a natural environment contains plains, foothills, and
mountains, all in one construction as in Figure 6.

Table 1. Related measurements of domain terrains

Parameter, Measurement Value

The number of triangles 2000 4000 6000 8000
Minimum edge-length (a) 2.00 1.13 1.03 0.87
Maximum edge-length (b) 27.93 23.77 18.22 14.81
Size of the domain 256.12× 256.27

Table 2. Related measurements of patch terrains

Parameter, Measurement Value

The number of triangles 10 20 30 40 60
Minimum edge-length (a) 6.94 2.97 3.25 2.55 2.17
Maximum edge-length (b) 20.24 17.90 15.88 13.62 11.94
Size of the domain 26.86× 25.93
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The experiments are done for each pair of five different patch terrains and four
different domain terrains with different number of triangles. We measure those
terrains to get values that mainly related to the realistic assumptions. The values
are shown in Table 1 and Table 2. The domain terrains have the same domain
and so the patch terrains: the domain terrains have the rectangular domain of
size 256.12× 256.27, and the patch terrains have the rectangular domain of size
26.86× 25.93. Also, the lengths of the edges tend to decrease as the number of
triangles increases in a terrain. It means that the number of triangles represents
the density of the triangulation.

We carry out our experiments with Intel Core i5-4590 CPU at 3.30GHz and
8GB DDR3 memory, and the algorithms are coded in C++.

Experimental results
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Fig. 7. Effect of triangulation density on response time.

We show the response times of our algorithm over varying m and n in Figure 7.
The response times do not increase rapidly even the worst case time complexity
of this implementation is expected O(nmA2) time, where A = m+ ( a

a′ )
2n. We

observe that the results show trends similar to the number of faces of M in
Figure 8

The asymptotic time to constructM is less than that of the rest as described
in Section 3. The ratio of constructing M decreases when m and n increases as
shown in Figure 9.

6 Conclusion

In this paper, we study the problem of finding a part of a big terrain which
is the most similar to a given small terrain. We propose a subdivision which
can be used to find a candidate set. Also we analyse its complexity when two
terrains satisfy the realistic assumption. Based on the subdivision, we suggest
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Fig. 9. Break down of the response time ratio.

two algorithms to solve the terrain matching problem under L∞ metric. One
can choose one of the algorithms depending on the size of two terrains. Also, we
extend each cell of M to a vertical prism and subdivide it to get a fixed formula
of the volume between two terrains. With this extended subdivision, we solve
the terrain matching problem under L1 metric.

For the further researches, we can consider the same problem with the
generalization of the distance measures to the Lp metric for p > 1 or the
same problem allowing rotation of terrains around z-axis. We expect that our
construction of the subdivisionM and its extension can be a good starting point
for the future works.
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