
Middle Curves Based on Discrete Fréchet Distance
∗

1

Hee-Kap Ahn† Helmut Alt‡ Maike Buchin§ Eunjin Oh¶ Ludmila Scharf‡2

Carola Wenk‖3

July 29, 20184

Abstract5

Given a set of polygonal curves, we present algorithms for computing a middle curve6

that serves as a representative for the entire set of curves. We require that the middle curve7

consists of vertices of the input curves and that it minimizes the maximum discrete Fréchet8

distance to all input curves. We consider three di�erent variants of a middle curve depending9

on in which order vertices of the input curves may occur on the middle curve, and provide10

algorithms for computing each variant.11

1 Introduction12

Sequential point data, such as time series and trajectories, are ever increasing due to technologi-13

cal advances, and the analysis of these data calls for e�cient algorithms. An important analysis14

task is to �nd a �representative� or �middle� curve for a set of similar curves. For instance,15

this could be the route of a group of people or animals traveling together. Or it could be a16

representation of a handwritten letter for a class of similar handwritten letters. Such a middle17

curve typically provides a concise representation of the data, which is useful for data analysis18

and for reducing the size of the data.19

Since sampled locations are more reliable than positions interpolated in between those, we20

seek a middle curve consisting only of sampled point locations. The middle curve should then21

be as close as possible to the individual curves, hence we ask for it to minimize the maximum22

discrete Fréchet distance dF to any of these. The Fréchet distance [1] and the discrete Fréchet23

distance [6] are well-known distance measures, which have been successfully used in analyzing24

handwritten characters [8] and trajectories [2, 10].25

For simplicity, we restrict our de�nitions to sets of two polygonal curves P and Q, as the26

generalization to k ≥ 2 such curves is straightforward. Given P and Q, we consider polygonal27

curves R with vertices from P ∪Q where we assume that each vertex of R uniquely corresponds28

∗This work was partially supported by research grant AL 253/8-1 from Deutsche Forschungsgemeinschaft
(German Science Association), and by the National Science Foundation under grants CCF-1301911 and CCF-
1618469. Work by Ahn and Oh was supported by the MSIT(Ministry of Science and ICT), Korea, under the
SW Starlab support program(IITP�2017�0�00905) supervised by the IITP(Institute for Information & commu-
nications Technology Promotion) and the NRF grant 2011-0030044 (SRC-GAIA) funded by the government of
Korea.
†Pohang University of Science and Technology, Korea. Email: heekap@postech.ac.kr
‡Free University of Berlin, Germany. Email: {alt, scharf}@mi.fu-berlin.de
§Technical University Dortmund, Germany. Email: maike.buchin@tu-dortmund.de
¶Max Planck Institute for Informatics, Germany. Email: eoh@mpi-inf.mpg.de
‖Tulane University, United States. Email: cwenk@tulane.edu

1

(a) unordered

P

Q

R

(b) ordered

P

Q

R

(c) restricted

P

Q

R

Figure 1: Illustration of the three di�erent cases. The curve R is a middle curve for each case. The
two-way arrow which points to a vertex in P ∪ Q and a vertex in R indicates a mapping between two
vertices realizing the discrete Fréchet distance.

to a vertex of P or Q. That is, we identify any such vertex by its index in P or Q and not just29

by the geometric position of the corresponding point.30

R is called ordered if any two elements of P occurring in R have the same order as in31

P , likewise with elements from Q. If R minimizes max{dF (R,P), dF (R,Q)}, it is called a32

(unordered) middle curve of P and Q. If R is ordered and minimizes this expression for all33

ordered curves it is called an ordered middle curve of P and Q.34

We obtain a third variant of the de�nition of middle curve, called restricted middle curve, by35

restricting the set of feasible matchings (see Section 2) in the de�nition of the discrete Fréchet36

distance. More precisely, R should be ordered and only matchings are allowed where elements37

of R are matched to their corresponding elements in P or Q. R then should be closest to P38

and Q among all ordered sequences with respect to this distance measure. Since vertices of R39

originate from P or Q, this seems a natural restriction.40

Figure 1 illustrates the three cases we consider: unordered, ordered, and restricted middle41

curves. In this example, each case results in a di�erent middle curve, and the associated distance42

increases as we add more restrictions. Note that from unordered to ordered we limit the middle43

curves we consider, whereas from ordered to restricted we limit the matchings we consider.44

Respecting the order of the input curves seems to be a natural requirement (ordered middle45

curve). Furthermore it seems intuitive that a vertex should be matched to itself on the middle46

curve (restricted middle curve). Among the di�erent algorithms we present for the various cases,47

the most e�cient algorithms are for computing an unordered middle curve in the Euclidean plane48

and (slightly less e�cient) for computing a restricted middle curve.49

Related work. The problem of �nding a curve that represents a set of curves has been studied50

in the literature [4, 7, 9]. While there are di�erent de�nitions of such a representative curve,51

none of them requires the representative curve to use vertices of the input curves. Buchin et52

al. [4] and van Kreveld et al. [9] both require the representative curve to use parts of the input53

edges. Buchin et al. aim for the curve to always �stay in the middle� in the sense of a median54

and give an O(k2n2)-time algorithm, where k is the number of given curves and n is the number55

of vertices in each curve. van Kreveld et al. require the representative curve to be as close as56

possible to all trajectories at any time, allowing small jumps between di�erent trajectories, and57

give an O(k3n)-time algorithm. Note that neither of these approaches makes use of the Fréchet58

distance or its variants. Using neither input vertices nor input edges, Har-Peled and Raichel [7]59

show that a curve minimizing the Fréchet distance to k input curves can be computed in O(nk)60

time in the k-dimensional free space using the radius of the smallest enclosing disk as �distance�.61

2

Our Results. We present algorithms for computing a middle curve that minimizes the discrete62

Fréchet distance to k input curves for k ≥ 2 each of size at most n in three variants:63

1. Ordered case: O(n2k)-time algorithm for computing an ordered middle curve.64

2. Restricted case: O(nk logk n)-time algorithm for computing a restricted middle curve.65

3. Unordered case: O(nk log n)-time algorithm for computing an unordered middle curve.66

In the following sections, we present the algorithms for these three cases. For the ordered67

case and the restricted case, the algorithm works for any metric. For the unordered case, the68

algorithm works only for the Euclidean metric while we can modify our algorithm to work for69

any metric with running time of O(nk+1).70

We also distinguish two variants of the problem depending on whether multiple occurrences71

of vertices on R are allowed or not. The algorithms for the restricted and the unordered cases72

allow vertices to occur multiple times. In the ordered case, our algorithms can handle both73

variants.74

Instead of minimizing the distance to the input curves, we may want to minimize the size of75

a middle curve for a �xed distance. We give algorithms for this variant as well. However in the76

end we discuss that middle curves may have high complexity.77

2 Preliminaries78

Let P = (p1, . . . , pn) and Q = (q1, . . . , qm) be two polygonal curves, represented as point se-79

quences in Rd. And let d(., .) denote a metric used to measure point-wise distances. The discrete80

Fréchet distance, denoted by dF (P,Q), is de�ned as follows: A matching1 is a sequence of pairs81

(p, q) ∈ P ×Q such that (1) the sequence begins at (p1, q1) and ends at (pn, qm), and (2) a pair82

(pi, qj) in the sequence is followed only by one of (pi+1, qj), (pi, qj+1), or (pi+1, qj+1). The value83

of a matching is the maximum distance of p and q over all pairs (p, q) in the matching. Then84

dF (P,Q) is the minimum value over all possible matchings. If P and Q are empty, then we85

de�ne dF (P,Q) = 0, and if either P or Q is empty then dF (P,Q) =∞.86

As mentioned in the introduction, given two polygonal curves represented as point sequences87

P = (p1, . . . , pn) and Q = (q1, . . . , qm), a (unordered) middle curve of P and Q is a sequence R88

of elements from P ∪Q which minimizes max{dF (R,P), dF (R,Q)}. Notice, that an element of89

R is identi�ed by whether it originates from P or Q and by the index in that sequence. This90

is necessary when we consider the other variants of middle curve as de�ned in the introduction.91

We call R an ordered middle curve if elements of R respect the order given by the input curves92

and max{dF (R,P), dF (R,Q)} is the minimum among all such curves. We also consider the93

restricted variant of middle curves, where elements of R need to be matched to themselves in94

the curve they are taken from.95

2-Approximation. A simple observation is that any of the input curves is a 2-approximate96

middle curve, i.e., the associated discrete Fréchet distance is at most double that of an optimal97

middle curve. Any input curve gives a restricted middle curve, and hence this holds for all three98

variants, i.e., unordered, ordered, and restricted.99

The 2-approximation follows by the triangle inequality. In fact, let P and Q be two arbitrary100

input curves. For any middle curve R realizing the minimum distance, say dmin, let (pi, rk) and101

(qj , rk) denote pairs in optimal matchings of R with P and Q, respectively. Then, we have102

d(pi, qj) ≤ d(pi, rk) + d(rk, qj) ≤ 2dmin by the triangle inequality, where d(p, q) denotes the103

1Note that this is not a one-to-one matching, and for this reason has also been called a coupling.

3

R R

P

P

Q
Q

(a) (b)

ε

ε

Figure 2: (a) The 2-approximation is tight. (b) The middle curve may need to consist of vertices
from both curves.

distance between p and q of the underlying metric. As can easily be seen, this implies that there104

is a matching of P and Q whose distance is at most 2dmin. Thus, we have a 2-approximation in105

constant time (not counting the time to output the vertices of the approximate middle curve).106

Note that the 2-approximation is tight, as the example in Figure 2(a) shows. We observe also107

that for a middle curve we may need to choose a subset of vertices from both curves, as in108

Figure 2(b).109

3 Algorithms for the Ordered Case110

In this section we present a dynamic programming algorithm for computing an ordered middle111

curve R. We �rst give a decision algorithm for two input curves P and Q, and we allow the112

same vertex to occur at most once on R. Later we show how to generalize the algorithm to more113

than two input curves, to allow vertices to occur multiple times in R, and how to solve the two114

optimization variants.115

3.1 Decision Problem for Two Curves116

Let P = (p1, . . . , pn) and Q = (q1, . . . , qm) be two input curves, and let ε ≥ 0 be given. In117

this section we allow the same vertex to occur at most once on R. Let Pi denote the pre�x118

(p1, . . . , pi) of P for 1 ≤ i ≤ n, and let Qj denote the pre�x (q1, . . . , qj) of Q for 1 ≤ j ≤ m. We119

use P0 and Q0 to denote an empty subsequence of P and Q, respectively.120

The dynamic programming algorithm operates with four-dimensional Boolean arrays of the
form X[i, j, k, l] for 0 ≤ i ≤ k ≤ n and 0 ≤ j ≤ l ≤ m, where X[i, j, k, l] is true if and only if
there exists an ordered sequence R from points in Pi ∪Qj for a �xed ε ≥ 0 such that

max{dF (R,Pk), dF (R,Ql)} ≤ ε.

We say in this case that R covers Pk and Ql. Clearly, the decision problem has a positive answer121

if and only if X[i, j, n,m] is true for some i and j.122

In order to determine the values of X[i, j, k, l] with 0 ≤ i ≤ k ≤ n and 0 ≤ j ≤ l ≤ m, we
need more information, particularly, whether there is a covering sequence R in which the points
pi and qj occur, and if they do, whether they occur in the interior or at the end of the sequence.
To this end, we can represent the array X as the component-wise disjunction of seven Boolean
arrays

X = A ∨B ∨ C ∨D ∨ E ∨ F ∨G.

4

The entries of the Boolean arrays de�ned below, indicate whether an ordered sequence R from123

points in Pi ∪Qj , 0 ≤ i ≤ n, 0 ≤ j ≤ m covering Pk and Ql exists with the following properties,124

respectively:125

A[i, j, k, l]: R contains neither pi nor qj .126

B[i, j, k, l]: R contains pi in its interior but does not contain qj .127

C[i, j, k, l]: R ends in pi but does not contain qj .128

D[i, j, k, l]: R contains qj in its interior but does not contain pi.129

E[i, j, k, l]: R ends in qj but does not contain pi.130

F [i, j, k, l]: R contains qj in its interior and ends in pi.131

G[i, j, k, l]: R contains pi in its interior and ends in qj .132

If i = 0 or j = 0, the described properties involve the �nonexisting points� p0 or q0 which should133

be interpreted as not being contained in any curve. Also, it might be the case that i, j, k, or l are134

0 which means that the corresponding sequences are empty. In general, observe that R cannot135

contain both pi and qj in its interior. See Figure 3 for an illustration of the seven di�erent cases136

that can occur.137

Our dynamic programming algorithm is based on the recursive identities for the Boolean
arrays given in the following paragraphs. Each identity holds only if all index ranges of the
arrays in the formulas are nonnegative.

A[0, 0, 0, 0] = true

A[0, 0, k, l] = false , for k ≥ 1 or l ≥ 1
A[i, 0, k, l] = X[i− 1, 0, k, l]
A[0, j, k, l] = X[0, j − 1, k, l]
A[i, j, k, l] = X[i− 1, j − 1, k, l]

B[i, 0, k, l] = B[0, j, k, l] = false

B[i, j, k, l] = G[i, j − 1, k, l] ∨B[i, j − 1, k, l]

As easily can be veri�ed, each of these identities holds with the meaning given to the Boolean138

arrays previously. For example, the �rst two equalities for A hold because an empty curve covers139

an empty sequence, but not any other sequence, and the following equalities for A are straight-140

forward. The �rst line of equalities for B holds because pi must be at the end of R if no points141

from Q are available, and there is no point p0 which a middle curve could contain. In the last142

equality for B, the entry G[i, j − 1, k, l] accounts for the case that R contains qj−1 (which then143

must be at the end), and B[i, j − 1, k, l] for the case that it does not.144

A

qj

pi

qj

pi

B

qj

pi

D

qj

pi

F

qj

pi

G

qj

pi

C

qj

pi

E

R R R R RRR

Figure 3: Illustration of cases in the dynamic programming.

5

In the following, let cl(p, q) = true if and only if d(p, q) ≤ ε, for two points p and q. The
following identities hold for C:

C[i, j, 0, l] = C[i, j, k, 0] = C[0, j, k, l] = false and otherwise,
C[i, j, k, l] = cl(pi, pk) ∧ cl(pi, ql) ∧

(A[i, j, k − 1, l − 1] ∨ A[i, j, k − 1, l] ∨ A[i, j, k, l − 1] ∨
C[i, j, k − 1, l − 1] ∨ C[i, j, k − 1, l] ∨ C[i, j, k, l − 1])

The equalities in the �rst line hold because only an empty curve can cover an empty sequence,145

and because a middle curve cannot end in the nonexisting p0. The equality in the second line146

models that the �nal point pi in R can cover pk and ql only, or it can also cover additional points147

that occur earlier in the sequences Pk and Ql.148

The entries of D and E can be determined analogously to the ones of B and C with the
roles of pi and qj exchanged. The identities for F have similar explanations as the ones for C:

F [0, j, k, l] = F [i, 0, k, l] = F [i, j, 0, l] = F [i, j, k, 0] = false

F [i, j, k, l] = cl(pi, pk) ∧ cl(pi, ql)∧
(D[i, j, k − 1, l − 1] ∨ D[i, j, k − 1, l] ∨ D[i, j, k, l − 1] ∨
E[i, j, k − 1, l − 1] ∨ E[i, j, k − 1, l] ∨ E[i, j, k, l − 1] ∨
F [i, j, k − 1, l − 1] ∨ F [i, j, k − 1, l] ∨ F [i, j, k, l − 1])

The entries of G can be determined analogously to the ones of F with the roles of pi and qj149

exchanged.150

The dynamic programming algorithm takes O(n2m2) time and space to decide if an ordered151

middle curve of two curves of size n and m exists for a �xed distance. While �lling the dynamic152

programming matrices we can compute an additional pointer array Y [i, j, k, l] that, for each153

true assignment in one of the equalities, stores a pointer to one of the 4-tuples of indices on the154

right hand side of the equality that made the assignment true. A covering sequence R can then155

be computed by backtracking these pointers. Note that there can be an exponential number of156

valid middle curves (e.g., if all points are within distance ε of each other).157

3.2 Optimization Problems158

We can solve the optimization problem of minimizing ε by adapting the dynamic programming159

approach to compute the smallest value for which a covering middle curve exists.160

Instead of storing truth values, X stores the minimum value of the seven arrays, A to G.161

Array entries are initialized to 0|∞ instead of true|false, any cl(p, q) in the formulas is replaced162

by the distance d(p, q), ∨ becomes min, and ∧ becomes max. The running time for computing163

the minimum ε for which a middle curve exists is the same as for the decision problem described164

in Section 3.1.165

Similarly, if we want to minimize the size of an ordered middle curve for a �xed distance ε,166

we can adapt the dynamic program to store the smallest size of a middle curve in the following167

way:168

Again, true|false are replaced by 0|∞, ∨ becomes min, and the recursion for C is modi�ed
as follows:

C[i, j, k, l] = ∞ if ¬(cl(pi, pk) ∧ cl(pi, ql)) and, otherwise,

C[i, j, k, l] = min(A[i, j, k − 1, l − 1] + 1, A[i, j, k − 1, l] + 1, A[i, j, k, l − 1] + 1,
C[i, j, k − 1, l − 1], C[i, j, k − 1, l], C[i, j, k, l − 1])

6

and the one for F becomes:

F [i, j, k, l] = ∞ if ¬(cl(pi, pk) ∧ cl(pi, ql)) and, otherwise,

F [i, j, k, l] = min(D[i, j, k − 1, l − 1] + 1, D[i, j, k − 1, l] + 1, D[i, j, k, l − 1] + 1,
E[i, j, k − 1, l − 1] + 1, E[i, j, k − 1, l] + 1, E[i, j, k, l − 1] + 1,
F [i, j, k − 1, l − 1], F [i, j, k − 1, l], F [i, j, k, l − 1])

Again, the entries of E and G can be computed analogously to the ones of C and F with the169

roles of pi and qj exchanged.170

3.3 Generalization to Multiple Curves and Multiple Vertex Occurrences171

The decision and optimization algorithms can be generalized to k sequences P 1, . . . , P k of172

sizes n1, . . . , nk, respectively. The corresponding arrays then have 2k indices [i1, ..., ik, j1, ..., jk],173

1 ≤ i1, j1 ≤ n1, ..., 1 ≤ ik, jk ≤ nk, describing the covering of the partial sequences (pre�xes)174

P 1
j1
, ..., P k

jk
by a middle curve R using points from P 1

i1
∪ ... ∪ P k

ik
.175

As in the case k = 2, we obtain di�erent arrays depending on which points p1i1 , ..., p
k
ik

are176

at the end, in the interior, or not contained in R. Since there are k2k−1 possibilities to put177

one of these points at the end and others in the interior, and 2k possibilities to put a subset178

of {p1i1 , ..., p
k
ik
} in the interior and not using the remaining ones, and the possibility of having179

all of them in the interior is excluded, there must be k2k−1 + 2k − 1 arrays re�ecting all these180

possibilities. (Which is, in fact, 7 for k = 2).181

For any constant k, there is a constant number of arrays each of which has n21 · · ·n2k entries.182

The recursive formulas to compute the entries of the arrays which, for simplicity, we do not183

explain for the general case, can be derived in a way analogous to the ones in the case k = 2.184

They have constant size for constant k, and therefore the runtime of the dynamic programming185

algorithm is O(n21 · · ·n2k).186

The dynamic programming algorithm can also be modi�ed to allow multiple occurrences of187

points on R, which requires distinguishing slightly more cases than before: Whether a point188

appears at the end only, both at the end and in the interior, in the interior only, or not at all in189

R. This results in 2k(k + 1)− 1 arrays: now all k points may appear in the interior or not, any190

of the k or no point appears at the end, but not all k points can appear in the interior only.191

We summarize the results of this section:192

Theorem 1. For k ≥ 2 curves of size at most n each, we can compute an ordered middle curve193

in O(n2k) time using O(n2k) space. For �xed ε > 0, an ordered middle curve with minimum194

complexity and distance at most ε to the input curves can be computed in the same time.195

4 Algorithms for the Restricted Case196

Now we consider the case where the matchings realizing the discrete Fréchet distance are re-197

stricted to map every vertex of R to itself in the input curve it originated from. This case allows198

for a more e�cient dynamic programming algorithm.199

4.1 Decision Problem for Two Curves200

Dynamic Programming Formulation. Let P = (p1, . . . , pn) and Q = (q1, . . . , qm) be two
input curves with m ≤ n, and let ε ≥ 0. We de�ne arrays similar to the ones in Section 3. Let

7

X[i, j] be true for 0 ≤ i ≤ n, 0 ≤ j ≤ m if and only if there exists an ordered sequence R from
points in Pi ∪Qj with

max{dF (R,Pi), dF (R,Qj)} ≤ ε,

with the restriction that there exist matchings that map every vertex of R to itself in the input201

curve it originated from. We say in this case that R restrictively covers Pi and Qj . Clearly, the202

decision problem has a positive answer if and only if X[n,m] is true.203

Similar to the one in Section 3 we can write X as a disjunction of three Boolean arrays

X = A′ ∨ C ′ ∨ E′.

For each array de�ned below, a sequence R from points in Pi ∪Qj restrictively covering Pi and204

Qj exists with the following properties, respectively:205

A′[i, j]: R ends in neither pi nor qj (but may contain one of them in its interior).206

C ′[i, j]: R ends in pi (and may contain qj in its interior).207

E′[i, j]: R ends in qj (and may contain pi in its interior).208

In contrast to the one in Section 3, we now only distinguish the cases by the last point of R.209

Hence, we only distinguish three cases. (In comparison to the ordered case, A′ combines A,B,D,210

and C ′ combines C,F , and E′ combines E,G). However, we will only explicitly compute X and211

not A′, C ′, E′.212

We compute X incrementally using dynamic programming, iterating over all (i, j) in increas-213

ing order. For �xed (i, j) we consider adding pi or qj to a middle curve R from Pi∪Qj , where pi214

and qj are matched to each other. That is, we consider adding say pi to R, where it is matched215

to itself on P and to the point qj on Q. We iterate over all (i, j) maintaining in the table X the216

coverage of P and Q by a restricted middle curve from Pi ∪Qj .217

For this, we initialize X[0, 0] to true and X[i, 0] and X[0, j] to false for i, j > 0. Then we218

incrementally process all entries (i, j) for i, j > 0. We use the following order (which we will219

need later when we introduce X̄): For j = 1, we process all (i, j) incrementally from i = 1 to n;220

Then we increase the index j by 1 and process all (i, j) incrementally from i = 1 to n, and we221

repeat this up to j = m.222

When processing (i, j), we need to �rst check, whether pi and qj can be matched to each223

other, i.e., they have distance ≤ ε. If they do, we then need to check if there exists a middle224

curve from Pi ∪Qj that covers up to here, or whose coverage can be extended up to here after225

adding pi or qj . If this is the case, we consider how the coverage extends by adding pi or qj or226

both. We maintain this information in the table X as we iterate over (i, j). To make this more227

explicit, we introduce the notions of upper and lower wedges in the table X, which re�ect the228

coverage on P and Q when adding a point pi or qj , which are matched to each other.229

Assume pi is matched to qj . We use the upper wedge UP (i, j) to describe the resulting230

coverage of P and Q when adding pi to R. Speci�cally, UP (i, j) denotes the set of index pairs231

(i′, j′) such that d(pi′′ , pi) ≤ ε and d(qj′′ , pi) ≤ ε for all i ≤ i′′ ≤ i′ and j ≤ j′′ ≤ j′. That232

is, UP (i, j) consists of consecutive index pairs (i′, j′) ≥ (i, j) that are covered by pi. The lower233

wedge LP (i, j) denotes the set of index pairs (i′, j′) such that d(pi′′ , pi) ≤ ε and d(qj′′ , pi) ≤ ε for234

all i′ ≤ i′′ ≤ i and j′ ≤ j′′ ≤ j. Furthermore, we de�ne the extended lower wedge L̂P (i, j) which,235

in addition to all index pairs in the lower wedge LP (i, j) also contains (i′, j′) immediately to the236

left or below, i.e., for which (i′+ 1, j′), (i′, j′+ 1), or (i′+ 1, j′+ 1) is contained in LP (i, j). The237

wedges UQ[i, j], LQ[i, j], and L̂Q[i, j] are de�ned analogously, consisting of index pairs (i′, j′) for238

which pi′ and qj′ are both close to qj , that is, cl(pi′ , qj) = cl(qj′ , qj) = true. Figure 4 illustrates239

these wedges for a pair (i, j).240

8

pi

qj

i

jε

LP (i, j)

L̂P (i, j)

UP (i, j)

(a) Curves P and Q (b) Table X

Figure 4: (a) Points of P and Q that are at distance at most ε from pi. (b) The upper wedge UP (i, j),
the lower wedge LP (i, j), and the expended lower edge L̂P (i, j) at (i, j) on P .

Using this terminology we observe for i, j > 0:

A′[i, j] = (∃i′ < i, j′ ≤ j : (C ′[i′, j′] ∧ (i, j) ∈ UP (i′, j′)))
∨ (∃i′ ≤ i, j′ < j : (E′[i′, j′] ∧ (i, j) ∈ UQ(i′, j′)))

C ′[i, j] = cl(pi, qj) ∧ (∃i′ ≤ i, j′ < j : (X[i′, j′] ∧ (i′, j′) ∈ L̂P (i, j)))

E′[i, j] = cl(pi, qj) ∧ (∃i′ < i, j′ ≤ j : (X[i′, j′] ∧ (i′, j′) ∈ L̂Q(i, j)))

During the dynamic programming, in order to e�ciently answer queries of the form (i, j) ∈241

UP (i′, j′) we maintain the upper envelope X̄ of all true elements in X. More speci�cally, we242

de�ne X̄[i] = max{j | X[i, j] = true}. Using X̄, the query whether a rectangle is nonempty (i.e.,243

contains a true point) reduces to querying whether the upper envelope intersects the rectangle.244

Note that X as well as X̄ change during the dynamic programming for increasing i and j in the245

speci�ed order.246

Querying and Updating the Upper Envelope X̄. We store X̄ in an augmented balanced247

binary search tree sorted on i. Each leaf corresponds to an index i and stores X̄[i]. We sometimes248

use an index i to denote the leaf corresponding to i. For an internal node v of the search tree,249

let I(v) denote the set of all indices corresponding to the leaves of the subtree rooted at v. Each250

internal node v stores two key values m[v] andM [v], where m[v] is the minimum of X̄[i] over all251

indices i in I(v) and M [v] is the maximum. Note that the node set, and hence the structure, of252

the tree is static. The only changes we make, is increasing the values X̄[i] at leaves, and hence253

also the augmented values at inner nodes.254

We need the following two operations.255

1. Querying whether a rectangle intersects X̄. Given an extended lower wedge with bottom-256

left corner (iB, jB) and top-right corner (iT , jT), we need to check if there is an index i257

such that jB ≤ X̄[i] and iB ≤ i ≤ iT .258

This can be done as follows. Consider the search paths from the root to iB and iT . Let uc259

be the lowest common ancestor of iB and iT . Whenever we descend into the right child at260

a node v on the path from uc to iT , we check the maximum key value of the left child vL261

of v. The set I(vL) is contained in the interval [iB, iT]. Thus, if M [vL] ≥ jB, the correct262

answer for the query is �yes�. Otherwise, we do not need to consider the subtree rooted263

at vL further. Whenever we descend into the left child at a node v on the path to iB, we264

check the answer for the query on the right child of v analogously. Hence we can answer265

the query while we traverse the two paths, which takes logarithmic time.266

9

2. Updating X̄ by adding a rectangle. Given an upper wedge whose bottom-left corner is267

(iB, jB) and top-right corner is (iT , jT), we want to add this to X̄, i.e., all values in the268

wedge are set to true in X. For this, we need to update X̄[i] to jT for all iB ≤ i ≤ iT269

with X̄[i] < jT .270

We traverse the balanced binary search tree from the root as follows. Assume that we271

reach a node v. If jT is at most m[v] or I(v) has no element lying in [iB, iT], then we do272

not need to update the values stored in the leaves of the subtree rooted at v. Hence we273

do not traverse this subtree. If m[v] is smaller than jT and I(v) has an element lying in274

[iB, iT], then we need to search further in the subtree rooted at v. So, we move to both275

children of v.276

Finally we reach some leaf, which is updated if jT > X̄[i]. Then we go back to the root277

from those leaves and update the key values for internal nodes lying on the paths. It is278

easy to see that the running time of the update is O(c log n), where c is the number of279

indices which are updated.280

We can now formulate the decision algorithm, which �rst precomputes all wedges and then281

iteratively computes the table X.282

Computing all wedges. We compute the upper wedge UP (i, j) as follows: For �xed pi, we283

�rst �nd the largest k ≥ i such that all pi, . . . , pk are at distance at most ε from pi. Then we284

�nd the largest l ≥ j such that all qj , . . . , ql are at distance at most ε from pi. This determines285

the upper right corner (k, l) of UP (i, j). Note that (k, l) is also the upper right corner for all286

UP (i, j′) for j ≤ j′ ≤ l. Hence, all upper wedges UP (i, j) for a �xed i can be computed in O(n)287

time using two linear scans, one over P and one over Q. The wedges UQ(i, j), LP (i, j), LQ(i, j)288

are computed in a similar manner.289

Computing the table X. First, we initialize all X[i, j] to false, except for X[0, 0] which is290

set to true. Then we compute X[i, j] incrementally in the speci�ed order. In each iteration, we291

process (pi, qj) only if they can be matched to each other, i.e., if cl(pi, qj) = true.292

When we compute an entry X[i, j], we have two cases. If X[i, j] is still set to false, i.e.,293

we do not know of a middle curve covering Pi and Qj yet, we �rst check whether adding pi or294

qj to a covering sequence would extend the coverage to here. For this, we check if L̂P (i, j) or295

L̂Q(i, j) intersects X̄. If L̂P (i, j) intersects X̄, then pi can be added to a covering sequence, and296

we set X[i, j] = true. Conversely, if L̂Q(i, j) intersects X̄, then qj can be added to a covering297

sequence, and we do the same.298

If X[i, j] is true, then both pi and qj can be added to a covering sequence, and hence we299

add the points covered by pi or qj , i.e., UP (i, j) and UQ(i, j), to X and X̄. The wedge UP (i, j)300

is added to X and X̄ as follows: We update X̄ with UP (i, j). During the update step we can301

identify all pairs (i′, j′) ∈ UP (i, j) with ¬X[i′, j′]; these are all (i′, j′) such that i′ is a leaf in X̄302

that gets updated and max{jB, X̄[i′]} ≤ j′ ≤ jT , where (iB, jB) is the lower left and (iT , jT)303

the upper right corner of UP (i, j). We set all X[i′, j′] = true and store a pointer from (i′, j′) to304

(i, j) that is labeled with P . Adding UQ(i, j) to X and X̄ is done in a similar manner, but the305

pointers are labeled with Q. Note that the upper wedges are added to X in such a way that306

each X[i, j] is set to true only once.307

The algorithm can be summarized as follows.308

10

Set X[i, j] = false for all index pairs (i, j), except X[0, 0] which is set to true.

Set X̄[i] = −1 for all indices i > 0, except X̄[0] which is set to 0.

for j = 1 to m do

for i = 1 to n do

if cl(pi, qj) = true:

if ¬X[i, j]: If L̂P (i, j) or L̂Q(i, j) intersects X̄, set X[i, j] to true

if X[i, j]: Add UP (i, j) and UQ(i, j) to X and X̄, i.e. set all entries to true

309

For the correctness of the algorithm, observe that if X[i, j] holds because of A′[i, j], then it310

is set to true when the last point of a covering is processed. If X[i, j] holds by C ′[i, j] or E′[i, j],311

then this is handled in the ¬X[i, j] case of the algorithm.312

Recall that we assume m ≤ n. The running time for computing all wedges is O(n2) since for313

each point pi ∈ P or qj ∈ Q, we perform a constant number of linear scans. For the main part314

of the dynamic programming algorithm, when we consider an index pair (i, j), we perform a315

query on X̄ which takes O(log n) time, and we add one or two upper wedges to X. The update316

operation that is part of adding a wedge takes O(c log n) time, where c is the number of indices317

that are updated. However note that X̄[i] is updated at most m times for each index i in total,318

and X[i, j] is updated at most once for each index pair (i, j). Thus the running time for the319

decision algorithm is O(n2 + nm log n).320

To extract a middle curve from the table X we additionally store labeled pointers in the table321

as follows. Each entry (i, j) in X that is set to true (except for (0, 0)) gets a pointer to a true322

entry (i′, j′) with i′ < i and j′ < j. Furthermore, the pointer receives two labels: p|q and f |b323

where the �rst indicates the curve P or Q, and the second indicates forward or backward. The324

two labels together exactly specify one of the four points pi′ , qj′ , pi, qj . A middle curve can be325

reconstructed from these pointers by following them from the entry (n,m) to (0, 0) and choosing326

the points according to the labels. The pointers can be set in the algorithm as follows: when327

X[i, j] is set to true in the ¬X[i, j] case, a pointer is set to a true entry in L̂P (i, j) or L̂Q(i, j)328

labeled (p|q, b). When X[i′, j′] is set to true when adding an upper wedge UP (i, j) or UQ(i, j) in329

the X[i, j] case, a pointer is set to (i, j) labeled (p|q, f). Thus in both cases the pointer refers330

to pi or qj depending on whether the P or Q wedge is involved.331

Note that the algorithm allows multiple occurrences of vertices. However, the restriction332

enforces that if a vertex occurs multiple times, then all vertices of the other curve that occur333

in between are matched to that vertex in the discrete Fréchet matching. Figure 5 shows an334

example of this.335

4.2 Optimization Problems for Two Curves336

The optimal distance is attained between a pair of points from P ∪ Q. We therefore sort all337

distances between such pairs of points in O(n2 log n) time and then �nd the smallest distance338

by binary search using the decision algorithm.339

If we wish to minimize the size of an ordered middle curve for a �xed distance ε, we can,340

similar to the case in Section 3.2, adapt the dynamic program by storing the smallest size341

of a middle curve covering up to pi and qj in the arrays, and substituting ∨ by a min. In342

this case, however, we cannot use the upper envelope X̄ anymore to facilitate fast queries and343

updates. So, in each iteration we instead update each entry in X individually, replacing the344

11

q3

q2
q4

p2

p3

p4

q1

p1

p1 p2 p3 p4

q1

q2

q3

q4

p3, q2

p3LP (3, 4) UP (3, 4)

UQ(3, 2)

UP (3, 2)LP (3, 2)

p1, q1

Figure 5: (a) Two curves P = (p1, p2, p3, p4) and Q = (q1, q2, q3, q4), and a restricted middle curve
R = (p1, p3, q2, p3) that uses p3 twice. (b) A diagram illustrating array X and wedges.

�if cl(pi, qj) = true� statement with two nested for-loops. Hence, the total running time is345

O((mn)4). If we wish to optimize ε as well, we can do so using binary search, resulting in a346

total running time of O((mn)4 log n).347

4.3 Generalization to Multiple Curves348

For k > 2 curves of size at most n each, the decision algorithm can be generalized to work with349

a (k − 1)-dimensional range tree for X̄ and running time O(nk logk−1 n). We search over all350

distances between two points from any curves, so a middle curve can be decided in O(nk logk n)351

time. Using the pointers set by the algorithm, the algorithm can also output a middle curve.352

To compute a minimal restricted middle curve for a �xed distance, we can modify the simpler353

O(n2k) algorithm, where we iterate over all entries X[i, j] and if reachable add the k upper354

wedges. We now store in each entry the minimum complexity needed to cover the curves up355

to here (and possibly a pointer to the last point added), and take the minimum when adding356

wedges. This simpler algorithm has complexity O(n2k) and our technique of speeding up the357

algorithm using the upper envelope does not apply.358

We summarize the results of this section in the following theorem:359

Theorem 2. For two polygonal curves with n and m vertices for m ≤ n, and ε > 0, it can be360

decided whether there exists a restricted middle curve with distance at most ε in O(n2+mn log n)361

time. A restricted middle curve with minimum distance can be computed in O(n2 log n +362

mn log2 n) time. A restricted middle curve with minimum complexity and distance at most363

ε > 0 to the input curves can be computed in O((mn)4) time, and ε can be optimized in total364

O((mn)4 log n) time. For k ≥ 2 curves of size at most n each, a restricted middle curve with365

minimal distance can be computed in O(nk logk n) time.366

5 Algorithms for the Unordered Case367

In this section we consider the problem of computing an unordered middle curve. We present a368

straight-forward approach for the problem in Section 5.1. Then in Sections 5.2�5.4 we present369

faster algorithms for the case of curves in the Euclidean plane.370

In the unordered case we can formulate the problem more generally, that we are given two371

curves P,Q and a set S of points from which we build the middle curve R. The algorithms we372

present in this section work for any set S of points. When we build R from P and Q we use373

S = P ∪Q.374

12

5.1 Straight-Forward Decision and Optimization375

Let again P = (p1, . . . , pn) and Q = (q1, . . . , qm) be two input curves with m ≤ n. Let S be a set376

of ` points (possibly S = P ∪Q) from which we build the middle curve R. To solve the decision377

problem for the unordered case, we modify the dynamic programming algorithm for computing378

the discrete Fréchet distance of two curves [6] as follows. Let ε > 0 be an input of the decision379

problem. We consider an n × m matrix X, which we call the free space matrix. Each entry380

X[i, j] corresponds to the pair (pi, qj) of points. In contrast to the original algorithm, we mark381

an entry X[i, j] free if and only if there exists a point v from S such that v has distance at382

most ε to both pi and qj . Then we search for a monotone path from X[1, 1] to X[n,m] within383

the free entries in X.384

One way to determine whether X[i, j] is free for an index pair (i, j) is to test all possibilities385

for a point v ∈ S, each of which can be tested in O(1) time. When |S| = ` the free space matrix386

of size m× n can be computed in O(`mn) time. When S = P ∪Q, i.e., ` = m+ n this results387

in O(mn2) time for m ≤ n. The running time for searching for a monotone path in the matrix388

is O(mn).389

Similarly, we can compute an unordered middle curve with minimal distance in the same390

time as follows. We let X[i, j] be the minimum of max{d(v, pi), d(v, qj)} over all points v ∈ S.391

Then we search for a monotone path from X[1, 1] to X[n,m] such that the maximum entry392

X[i, j] in the path is minimized.393

For k ≥ 2 input curves of size at most n each, where k is constant, and |S| = `, we can394

compute an unordered middle curve of minimal distance in O(`nk) time in total using a k-395

dimensional free space matrix of size nk.396

To compute an unordered middle curve of minimal size for a given distance ε > 0, we consider397

the following graph: vertices are all tuples of points from the k curves, and there is a directed398

edge from (i1, . . . , ik) to (j1, . . . , jk) if there is a vertex in S that covers the subcurves from399

ih to jh on each curve 1 ≤ h ≤ k. This graph has nk vertices and up to n2k edges. It can400

be constructed in O(`n2k) time, by computing for each of nk vertices all of its outgoing edges401

in O(`nk) time. In the graph we search for a shortest path from vertex (1, . . . , 1) to vertex402

(n, . . . , n) which corresponds to a minimum middle curve.403

Theorem 3. For k ≥ 2 curves of size at most n each and a set S of ` points, an unordered404

middle curve built from S can be computed in O(`nk) time. For �xed ε > 0, an unordered middle405

curve with minimum complexity and distance at most ε to the input curves can be computed in406

O(`n2k) time.407

5.2 Decision Algorithm for Two Curves in the Euclidean Plane408

In this section, we assume that the two input curves lie in the Euclidean plane and use dE to409

denote the Euclidean metric. A further assumption is that now S = P ∪Q. We describe how to410

determine whether X[i, j] is free more e�ciently for the decision problem in this setting.411

We will use a circular sweep to determine, for each point qj in Q, all points pi in P such412

that X[i, j] is free, i.e., there is some point v of P ∪Q which has distance at most ε to both pi413

and qj . Let Uj(ε) be the union of disks of radius ε centered at points in P ∪Q and containing414

qj ∈ Q, and ∂Uj(ε) be the boundary of Uj(ε). Then, for a point pi ∈ P contained in Uj(ε),415

X[i, j] is free. To compute X[i, j] for all pi ∈ P , we construct Uj(ε) and perform a circular416

sweep around qj for the points in P . Once the endpoints of the circular arcs of ∂Uj(ε) and all417

points pi ∈ P are sorted around qj in clockwise order, the circular sweep takes O(m+ n) time.418

We design an algorithm that computes Uj(ε) e�ciently by constructing two data structures,419

the history list Hj and the deletion list Dj . In the preprocessing phase, we increase ε gradually420

13

and consider the combinatorial structure of Uj(ε). In doing so, we maintain the changes of the421

combinatorial structure of Uj(·) using the two data structures. In the construction phase, we422

compute, for a given ε, the union Uj(ε) of disks using the two data structures. This will allow423

us to solve the decision problem e�ciently. The construction phase takes O(m+n) = O(n) time424

while the preprocessing phase takes O(mn log n) time. The space we use for the data structures425

is O(mn).426

Each arc of ∂Uj(ε) changes continuously as ε increases. We will show that there are at most427

two arcs in ∂Uj(ε), which come from the same circle (Lemma 6). We treat them as distinct428

elements in ∂Uj(ε).429

Data Structures for a Point qj ∈ Q430

1. The data structures we maintain during the preprocessing phase:431

(a) Sj(ε) denotes the set of points of P ∪Q that are within distance ε from the point qj .432

(b) Γj(ε) is the balanced binary search tree representing the union of disks of radius ε433

centered at points of Sj(ε) for a �xed ε. The union Uj(ε) of disks is star-shaped434

and its boundary ∂Uj(ε) is a sequence of circular arcs with vertices in between. We435

maintain the balanced binary search tree Γj(ε) of these circular arcs in clockwise436

order around qj . Each element in Γj(ε) corresponds to an element in the history list437

(de�ned below) and they reference each other with a pointer.438

2. The data structures used for constructing Uj(ε) in the construction phase:439

(a) The history list Hj = {x1, . . . , xl}: Each element of the list corresponds to an arc440

of ∂Uj(ε) for some ε. Each such arc is part of a disk boundary of radius ε centered441

at a point of Sj(ε) that appears on ∂Uj(ε). This list represents the order of circular442

arcs of ∂Uj(ε) for every ε > 0. That is, for any three elements in Hj , if all arcs443

corresponding to the elements appear on ∂Uj(ε) for some �xed ε > 0, then the order444

of them on ∂Uj(ε) is the same as the order of the three elements in Hj .445

(b) The deletion list Dj = {(ε1, ε′1), . . . , (εt, ε′t)} with εk ≤ ε′k for every 1 ≤ k ≤ t: The446

k-th element of the list is de�ned by the k-th closest point in P ∪ Q from qj . By447

Lemma 6, the disk centered at the k-th closest point of radius ε has at most two arcs448

appearing on ∂Uj(ε) for any �xed ε > 0. An arc of the disk disappears from ∂Uj(ε)449

at ε = εk, and the other arc disappears from ∂Uj(ε) at ε = ε′k. (εk or ε′k might be450

in�nity or zero.) Since the list is an array of size m+ n, we can access each element451

in O(1) time.452

Preprocessing Phase: Constructing the Data Structures. For each qj ∈ Q, we construct453

the data structures mentioned above. To do this, we imagine that ε increases from zero to in�nity.454

As ε changes, the combinatorial structure of Uj(ε) changes. More speci�cally, a new arc appears455

on Uj(ε) and an arc disappears from Uj(ε). A value ε′ is called an event if the combinatorial456

structure of Uj(ε) changes at ε = ε′.457

There are two types of events: point events and radius events. A new arc appears on Uj(ε)458

only if a new point is inserted to Sj(ε). A new point p ∈ P ∪Q is inserted to Sj(ε) only when ε459

is the distance between qj and p by de�nition. We call such a value ε a point event. We say p460

de�nes this point event. For a point event e, we let p(e) be the point de�ning e. There are two461

cases how an arc disappears from Uj(ε): the case that the arc is contained in the disk centered462

at p(e′) with radius e′ at ε = ε′ for a point event ε′ and the case that ∂Uj(ε) passes through the463

point equidistant from the centers of the arc and its two neighboring arcs of Uj(ε
′) at some point464

14

ε′. The �rst case is handled by the point event de�ned by p, and the second case is handled by a465

radius event which is de�ned as follows. For any three consecutive arcs of ∂Uj(·), we call d(p, c)466

a radius event, where p is the center of any of the three arcs and c is the point equidistant from467

the centers of the three arcs. We say the three arcs de�ne this event.468

In the following, we show how to handle each event as ε increases.469

1. Sort all points of P around qj in clockwise order. Let Lj denote the sorted list.470

2. Initialize Hj := {qj},Γj(0) := {pj}, Sj(0) := {pj} and Uj(0) := {pj}. Initialize Dj to the471

array of size m+ n each of whose elements is initialized to a null value.472

3. Sort all points of P ∪ Q in increasing order of distance from qj and store the distances473

together with their corresponding points as events in an event queue E . Note that they474

are point events.475

4. While E is not empty, handle the earliest event e ∈ E as follows. Let e′ denote the event476

we just handled.477

(a) If e is a point event, the boundary of the disk centered at p(e) with radius e appears478

on ∂Uj(e) in one connected circular arc γ if it appears on ∂Uj(e) (see Lemma 4.) The479

endpoints of γ can be computed in O(log n) time by Lemma 5.480

Let γ1 and γ2 denote the neighboring arcs of γ, respectively, along ∂Uj(e) so that γ1, γ481

and γ2 appear on ∂Uj(e) in clockwise order. See Figure 6(a) for an illustration. When482

we compute γ, we can obtain γ1 and γ2. We �nd the element in Hj corresponding to483

γ1 and insert an element corresponding to γ to Hj next to the element. We remove484

all arcs of ∂Uj(e
′) coming from γ1 to γ2 in clockwise order along ∂Uj(e

′) and update485

the corresponding elements in Dj to e. We update Γj(e
′) accordingly to obtain Γj(e)486

in O(c log n) time, where c is the number of the deleted arcs.487

Then we have new triples of consecutive arcs along Uj(e), which induce radius events.488

Note that such a triple contains γ, and thus there are at most three new radius events.489

We insert all such events to E .490

(b) If e is a radius event, we �rst check if all three arcs de�ning e appear on Uj(e
′). If491

so, we remove the arc in the middle among the three arcs from Γj(e
′) and update Dj492

accordingly by setting the value of the element corresponding to γ in Dj to e. Due to493

the deletion of γ, the two neighboring arcs of γ become adjacent in Uj(e) for which494

we insert a new radius event.495

The number of point events is O(n) and the number of radius events is bounded by the num-496

ber of distinct arcs appearing on Uj(ε) over all increasing ε values, which is O(n) by Lemma 6.497

Thus, the number of events in the preprocessing phase and the size of the data structures are498

O(n). The preprocessing phase takes O(n log n) time for each qj ∈ Q.499

Construction Phase: Constructing the Free Space Matrix. Given ε > 0, the construc-500

tion phase works as follows. For each qj ∈ Q:501

1. Scan the listHj from the �rst element to the last element and check the list Dj to determine502

whether each arc appears on ∂Uj(ε). In O(n) time, we can obtain the sequence of the arcs503

appearing on ∂Uj(ε) in clockwise order, which represents ∂Uj(ε) itself.504

2. Perform a circular sweep by a ray from qj around qj with the points in Lj and the vertices505

of ∂Uj(ε). During the sweep, the ray always intersects an arc of ∂Uj(ε). We can determine506

15

qj

e′

e

e′′

γ

γ3

γ2

γ1

γ′

qj

(a) (b)

pi pi′

∂Uj(ε)

ε

∂Uj(δ(e))

∂Uj(δ(e
′))

(c)

qj c′

x1

x2

c

x′1

x′2

Dj D′

Figure 6: (a) Preprocessing. At the point event e, the arc γ′ disappears and the new radius event e′′ is
created, where e′′ is the point equidistant from the centers of γ1, γ2, and γ. γ2 will disappear from the
boundary at radius event e′′ unless it disappears before the event. (b) Construction of the free space
matrix. During the circular sweep, we compare each point pi ∈ P with the intersection point of ∂Uj(ε)
with the ray from qj through pi to determine whether pi is in Uj(ε). Here, X[i, j] is free and X[i, j′]
is not free. (c) The arc centered at c is subdivided into two subarcs by the event e. Then ∠x1cx′1 and
∠x2cx′2 are at most 2π/3.

whether pi is in Uj(ε) by comparing each point pi in Lj encountered by the ray with the507

current circular arc of ∂Uj(ε) intersected by the ray. If so, set X[i, j] to free. Figure 6(b)508

illustrates the circular sweep. This again can be done in O(n) time once Lj has been509

computed in the preprocessing step.510

For the correctness of the algorithm, we show the following lemma.511

Lemma 4. For a point event e, at most one arc of the disk of radius e centered at p(e) appears512

on ∂Uj(e).513

Proof. Assume to the contrary that there are two maximal circular arcs, γ and γ′, on ∂Uj(e)514

such that both arcs are on the boundary of the disk of radius e centered at p(e). Let Dj be the515

disk of radius e centered at qj . Since dE(p(e), qj) = e, the boundary of Dj contains p(e). Then516

there must be a disk D′ splitting the arc of ∂D \Dj into two, one containing γ and the other517

containing γ′.518

Here, the center of D′ is contained in Dj since the center of D′ has already been handled.519

Thus ∂D∩Dj intersects D
′ at a point, say x4. Since D

′ splits ∂D \Dj into two, there are three520

points x1, x2 and x3 appearing on ∂D \Dj in clockwise order such that x1 and x3 are contained521

in D′, and x2 and x4 are not contained in D′. This means that D and D′ cross each other, which522

is a contradiction.523

524

To analyze the running time of the algorithm, we need the following lemma.525

Lemma 5. The endpoints of the circular arc to be inserted at step 4(a) of the preprocessing526

phase can be computed in O(log n) time.527

Proof. Let e and e′ be the current event and the event previous to e, respectively. We maintain528

Γj(ε), which is the balanced binary search tree of the arcs of ∂Uj(ε) in clockwise order around529

qj . Note that Uj(ε) is star-shaped with respect to qj and there is no structural change to ∂Uj(ε)530

for e′ ≤ ε < e. Since the disk of radius e centered at p(e) is also star-shaped and contributes531

16

only one connected circular arc γ to ∂Uj(e), the two endpoints of γ can be computed in O(log n)532

time by a binary search on the vertices of ∂Uj(e
′).533

534

Lemma 6. Once an arc is divided into two subarcs, the subarcs will never be divided again.535

Proof. Let γ1 and γ2 be the arcs appearing on ∂Uj(ε) for some ε > 0, which come from the536

same disk D centered at a point, say c. Let x1, x
′
1, x2 and x′2 be the endpoints of γ1 and γ2 in537

clockwise order along the disk centered at c with radius ε.538

We �rst claim that ∠x1cx′1 and ∠x2cx′2 are at most 2π/3. See Figure 6(c). Let Dj be the539

disk centered at qj with radius ε. Since there are two arcs which come from ∂D, there is a disk,540

say D′, splitting ∂D \Dj . Note that the center of D
′, say c′, is contained in Dj . Without loss of541

generality, assume that qjc
′ is contained in the x-axis. Since D′ splits ∂D \Dj , D contains the542

intersection points between ∂D′ and ∂Dj . Thus the center c of D is contained in the intersection543

I of D′, Dj and the disks centered at the intersection points in ∂D′ ∩ ∂Dj of radius ε. Note544

that I consists of two circular arcs whose common endpoints are qj and c′. Also, notice that545

each of x1, x
′
1, x2 and x

′
2 lies on the bisector of c and qj (or c

′). By construction, the intersection546

point between the two bisectors, one between c and qj and one between c and c′, lies outside of547

D ∪Dj . Therefore, ∠x1cx′1 and ∠x2cx′2 are at most 2π/3.548

Now we show that γ1 is not divided further. The case of γ2 can be shown analogously.549

Assume to the contrary that γ1 is divided at ε. Again, let Dj be the disk centered at qj with550

radius ε. This means that there is a disk, say D′′, centered at a point in Dj , say c
′′, with radius551

ε such that x1 and x′1 are not contained in D′′ but a point, say x, other than its endpoints is552

contained in D′′. Imagine the set of points whose distance to x1 (and x′1) is larger than ε and553

whose distance to x is at most ε. The set lies outside of D because ∠x1cx′1 is at most 2π/3.554

Since c′′ lies in Dj and lies outside of D, the line segment cc′′ intersects ∂D \ γ1. This means555

that there are four points on ∂D such that the �rst and third points are contained in D′′ but556

the second and fourth points are not contained in D′′ in clockwise order around ∂D. This con-557

tradicts thatD andD′′ are disks. Therefore, γ1 is not divided further, and the lemma holds.558

559

To obtain a covering sequence in addition to a yes-answer, for each entry X[i, j] of the free560

space matrix, we mark the center of the circular arc of ∂Uj(ε) intersected by the ray starting561

from qj towards pi. Then the sequence of labels of a monotone path gives a feasible unordered562

sequence for the middle curve.563

Theorem 7. For two polygonal curves with n and m vertices for m ≤ n in the Euclidean plane,564

the decision problem for the unordered case can be solved in O(mn) time with O(mn log n)565

preprocessing time. A covering sequence can be computed in the same time.566

5.3 Optimization Algorithm for Two Curves in the Euclidean Plane567

We apply binary search on the sorted list of distances of pairs of points from P ∪Q involved in568

each step. There are O((m + n)2) = O(n2) distinct distances each de�ned by two points from569

P ∪ Q. We will show that we need only O(mn) of them to compute the optimal distance ε∗.570

The optimization algorithm we propose works as shown in the following four steps.571

1. Compute the set D of distances each de�ned by two points that are either both from Q,572

or one from P and one from Q.573

2. Sort the O(mn) distances of D and apply binary search on the sorted list with the decision574

algorithm in Section 5.2. Let ε1 be the largest distance of D that the decision algorithm575

17

ε2
qj

Figure 7: The white (circle) points are in Q and the black points are in P . The lengths of the line
segments connecting two black points are candidates of ε∗.

returns �no� and ε2 be the smallest distance of D that the decision algorithm returns �yes�.576

Then we know that ε1 ≤ ε∗ ≤ ε2. If ε1 6= ε∗ and ε2 6= ε∗, then ε∗ is the distance de�ned577

by two points in P . See Figure 7.578

3. To �nd ε∗, for each point qj ∈ Q,579

(a) compute the set Sj of points in P ∪ Q that are at distance at most ε2 from qj , and580

construct the Voronoi diagram VD(Sj).581

(b) For each point pi in P \ Sj , locate the cell of VD(Sj) that contains pi. If the site582

x associated with the cell is from P and ε1 < dE(pi, x) < ε2, then dE(pi, x) is a583

candidate for ε∗.584

4. Sort the O(mn) candidate distances and again apply binary search on the sorted list with585

the decision algorithm above.586

Analysis. Let (pi, qj , x) be a tuple realizing ε∗. Then max{dE(pi, x), dE(qj , x)} = ε∗. Clearly,587

x is the point in P ∪ Q that minimizes max{dE(pi, x), dE(qj , x)}. If x ∈ P and ε1 < ε∗ < ε2,588

then dE(pi, x) > dE(qj , x). Thus x is the point in Sj that is closest to pi. Thus, x is the point589

site associated with the Voronoi cell in VD(Sj) that contains pi. This proves that ε∗ is in the590

set of all candidates.591

Let us analyze the running time of the optimization algorithm. The set D can be constructed592

in O(mn) time. It takes O(mn log n) time to sort the distances in D. The binary search on593

the sorted list with the decision algorithm takes O(mn log n) time as the preprocessing phase594

is executed only once for each qj ∈ Q and the history and deletion lists are used for di�erent595

radii. In Step 3, the Voronoi diagram V D(Sj) can be constructed in O(n log n) time for each596

qj ∈ Q, and the point location for n points can be performed in the same time. Step 3(b) takes597

O(n log n) time for each qj ∈ Q.598

5.4 Generalization to Multiple Curves in the Euclidean Plane599

The decision algorithm can be extended to k curves P 1, . . . , P k of size at most n each for600

a constant k in the Euclidean plane. We construct a k-dimensional free space matrix whose601

entries correspond to k-tuples of points from distinct curves. An entry of the matrix is marked602

as free if there is an input point in the intersection of the disks centered at points in the k-tuple603

corresponding to the entry with radius ε, where ε is an input distance for the decision problem.604

18

To construct the matrix, we use an approach similar to the one for k = 2. For every605

(k − 1)-tuple (p1, . . . , pk−1) with pi ∈ P i for i = 1, . . . , k − 1, we do the following. Let D be606

the intersection of the disks centered at pi with radius ε for all i = 1, . . . , k − 1. We compute607

the union U of the disks with radius ε centered at input points lying in D, and check for each608

point in P k whether it is contained in the union. Here, the boundary of U has the star-shaped609

property for any point pi in the (k − 1)-tuple. We mark the entry in the matrix corresponding610

to the k-tuple (p1, . . . , pk) as free if and only if pk is contained in the union. Then we check if611

there is a monotone path from X[1, . . . , 1] to X[n, . . . , n] within the free entries in X.612

The construction of U takes O(kn log(kn)) time for �xed ε > 0. However we can compute it613

more e�ciently by maintaining the history data structure as we did for k = 2. Imagine that ε614

increases from zero to in�nity, and consider the combinatorial changes of U . There are two types615

of events: the point events and the radius events. The radius event is de�ned in the same way as616

the case of k = 2. For the point events, observe that the centers of the circular arcs of ∂U are in617

D. As ε increases, D changes as well. A new arc appears on ∂U when its center appears on the618

boundary of D. Also, its center appears on the boundary of D when ε is the distance between619

the center and the point in the (k−1)-tuple farthest from the center. Such distances are de�ned620

as point events. Clearly, there are O(n) point events. Also, Lemmas 4, 5 and 6 hold for a larger621

k. Thus we can maintain the combinatorial structure of U in O(kn log(kn)) = O(n log n) time.622

We keep track of the combinatorial changes using the history and deletion data structures as we623

did for k = 2. Then after the preprocessing, we can construct the union in O(kn) = O(n) time.624

We can check for each point in P k whether it is contained in the union in O(n) time. Thus,625

the decision algorithm takes O(nk) time once the history data structures are constructed for all626

(k − 1)-tuples.627

To compute a middle curve, we �rst construct history data structures for all (k − 1)-tuples628

in O(nk log n) time. Then we sort all distances de�ned by point pairs from P 1 ∪ . . . ∪ P k and629

search the optimal distance among them. Thus, we can compute an optimal covering sequence630

in O(nk log n) time.631

Theorem 8. For two polygonal curves with n and m vertices for m ≤ n in the Euclidean plane,632

the optimization problem for the unordered case can be solved in O(mn log n) time. An optimal633

covering sequence can be computed in the same time. For a �xed k ≥ 2, the optimization of k634

curves of size at most n each in the Euclidean plane can be solved in O(nk log n) time.635

6 Discussion636

We presented algorithms for computing a middle curve of minimal discrete Fréchet distance to637

the input curves. All our algorithms run in time exponential in k, the number of input curves.638

Hence these are practical only for small k. However, other algorithms that compute variants of639

the Fréchet distance for k curves such as [5] and [7] also take time exponential in k due to the640

use of a k-dimensional free space diagram. Assuming the Strong Exponential Time Hypothesis641

it is known that essentially no faster algorithms are possible [3]. Hence we also do not expect642

any substantially faster algorithms for �nding a middle curve based on the (discrete) Fréchet643

distance. An interesting open problem is to �nd more e�cient approximation algorithms.644

Also note that a middle curve (unordered, ordered, or restricted) computed by our algorithms645

can have complexity at most nk − k + 1. This follows because each vertex of the middle curve646

�advances� by at least one vertex on one of the input curves, of nk vertices in total. More647

formally, let R be a middle curve of size r. Consider the discrete Fréchet mappings of R to648

each of the input curves. Each of these gives a segmentation with duplicates of size r of the649

input curve. Now consider the set of all segmentations. For two consecutive vertices of R, the650

19

1 + ε

1

1 + ε

Figure 8: Example of a middle curve of complexity nk/2 (here k = 6). It consists of k/2 (here 3)
gray curves and k/2 black curves. The curves are given in pairs of one gray and one black curve
as shown on the right. Each gray curve has n− 2 vertices on the bottom line and 2 vertices on
the top line whereas each black curve has 2 vertices on the bottom line and n − 2 vertices on
the top line. The vertices are aligned along the two parallel lines.

corresponding sets of segmentations di�er, i.e., one of the input curves advances by at least one651

vertex. Furthermore, the �rst vertex of the middle curve covers all �rst vertices of each of the652

input curves. Hence these do not increase the size of the output middle curve.653

We observe that this bound is essentially tight by giving an example of k curves of complexity654

n each where a minimal middle curve has complexity nk/2. Consider the curves shown in655

Figure 8. In this example the only middle curve achieving the minimal Fréchet distance 1 + ε is656

the set of all points on the bottom line, either ordered from left to right or from right to left. For657

this, �rst observe that for a pair of corresponding gray and black curve, a middle curve consists658

of n points, one of each pair of points at distance 1 + ε, arbitrarily from the top or bottom line.659

However a middle curve for all k curves may only contain points on the bottom line, which are660

(horizontally) close to the start and end point of all other curves.661

However, in practice we expect middle curves to be much smaller. In the example in Figure 8662

we observe that if we increase the distance, the complexity decreases fairly quickly. On the other663

hand, if we decrease the distance, then a middle curve is no longer possible.664

Acknowledgments. This work was initiated at the 17th Korean Workshop on Computational665

Geometry. We thank the organizers and all participants for the stimulating atmosphere. In666

particular we thank Fabian Stehn and Wolfgang Mulzer for discussing this paper.667

References668

[1] H. Alt and M. Godau. Computing the Fréchet distance between two polygonal curves.669

International Journal of Computational Geometry & Applications, 5(1-2):75�91, 1995.670

[2] K. Buchin, M. Buchin, J. Gudmundsson, M. Lö�er, and J. Luo. Detecting commuting671

patterns by clustering subtrajectories. International Journal of Computational Geometry672

& Applications, 21(3):253�282, 2011.673

20

[3] K. Buchin, M. Buchin, W. Mulzer, M. Konzack, and A. Schulz. Fine-grained analysis of674

problems on curves. In G. Barequet and E. Papadopoulou, editors, Proceedings of the 32nd675

European Workshop on Computational Geometry (EuroCG'16), 2016.676

[4] K. Buchin, M. Buchin, M. van Kreveld, M. Lö�er, R. I. Silveira, C. Wenk, and L. Wiratma.677

Median trajectories. Algorithmica, 66(3):595�614, 2013.678

[5] A. Dumitrescu and G. Rote. On the Fréchet distance of a set of curves. In Proceedings679

of the 16th Canadian Conference on Computational Geometry (CCCG'04), pages 162�165,680

2004.681

[6] T. Eiter and H. Mannila. Computing discrete Fréchet distance. Technical report, Technische682

Universität Wien, 1994.683

[7] S. Har-Peled and B. Raichel. The Fréchet distance revisited and extended. ACM Transac-684

tions on Algorithms, 10(1):3:1�3:22, Jan. 2014.685

[8] E. Sriraghavendra, K. Karthik, and C. Bhattacharyya. Fréchet distance based approach686

for searching online handwritten documents. In Proceedings of the Ninth International687

Conference on Document Analysis and Recognition (ICDAR'07), volume 1, pages 461�465.688

IEEE Computer Society, 2007.689

[9] M. J. van Kreveld, M. Lö�er, and F. Staals. Central trajectories. In 31st European Work-690

shop on Computational Geometry (EuroCG'15), pages 129�132, 2015.691

[10] H. Zhu, J. Luo, H. Yin, X. Zhou, J. Z. Huang, and F. B. Zhan. Mining trajectory corridors692

using fréchet distance and meshing grids. In Advances in Knowledge Discovery and Data693

Mining, pages 228�237. Springer Berlin Heidelberg, 2010.694

21

