
Covering a Point Set by Two Disjoint Rectangles∗

Sang-Sub Kim† Sang Won Bae‡ Hee-Kap Ahn§

Abstract

Given a set S of n points in the plane, the disjoint two-rectangle covering problem is to
find a pair of disjoint rectangles such that their union contains S and the area of the larger
rectangle is minimized. In this paper we consider two variants of this optimization problem:
(1) the rectangles are free to rotate but must remain parallel to each other, and (2) one
rectangle is axis-parallel but the other rectangle is allowed to be in arbitrary orientation.
For both of the problems, we present O(n2 log n)-time algorithms using O(n) space.

1 Introduction

For a set S of n points in the plane, the disjoint two-rectangle covering problem is to find a pair
of disjoint rectangles with arbitrary orientations such that the union of the rectangles contains
all the points in S and the area of the larger rectangle is minimized. This is a fundamental
optimization problem that deals with covering a point set S in the plane by two geometric
objects of the same type. The surveys by Agarwal and Sharir [1] and by Segal [13] provide
comprehensive reviews on a list of such problems.

More specifically, the disjoint two-rectangle covering is a generalization of the axis-parallel
two-rectangle covering problem in which the two rectangles are restricted to be axis-parallel.
Bespamyatnikh and Segal [3] studied the restricted version of the problem and presented a sim-
ple O(n log n) time algorithm that finds the optimal axis-parallel covering. They also extended
the result into higher dimensions and presented an O(n log n + nd−1) time algorithm for the
problem in d-dimensional space.

For arbitrary orientations, Jaromczyk and Kowaluk [7] gave an O(n2) time algorithm for the
two-square covering problem with the restriction that the two squares are congruent and parallel
to each other. Later, Katz, Kedem and Segal [8] considered the discrete rectilinear two-center
problem: find two squares covering the point set S such that their centers are constrained to
be at points in S and the area of the larger square is minimized. They presented algorithms for
three variants of this problem: when two squares are axis-parallel, an O(n log2 n)-time/O(n)-
space algorithm; when two squares are parallel to each other but not necessarily axis-parallel, an
O(n2 log4 n)-time/O(n2)-space algorithm; when both can rotate independently, an O(n3 log2 n)-
time/O(n2)-space algorithm. Recently Saha and Das considered the two-rectangle covering
problem with restriction that the two rectangles are parallel to each other, and presented an
algorithm that finds an optimal two-rectangle covering in time O(n3) using O(n2) space [11].

∗This work was supported by the Korea Research Foundation Grant funded by the Korean Government
(MOEHRD, Basic Research Promotion Fund) (KRF-2007-331-D00372) and by the Brain Korea 21 Project.

†Graduate School for Information Technology, POSTECH, South Korea. helmet1981@postech.ac.kr
‡Division of Computer Science, KAIST, South Korea. swbae@tclab.kaist.ac.kr
§Department of Computer Science and Engineering, POSTECH, South Korea. heekap@postech.ac.kr

1

In this paper, we present an O(n2 log n) time algorithm that finds an optimal disjoint parallel
two-rectangle covering of S in arbitrary orientation, which improves the result of Saha and
Das [11]. We also consider a variant of the problem in which one rectangle is axis-parallel and
the other is allowed to have an arbitrary orientation while they remain disjoint. We present an
O(n2 log n) time algorithm for this variant. Moreover, both of our algorithms presented in this
paper use only linear space. The general approach to most of optimal covering problems is first
to solve the corresponding decision problem, then to apply an optimization scheme, such as the
sorted matrices technique [5], the expander-based technique [9], or parametric search [10]. In
contrast, our algorithms are rather intuitive: based on a few geometric observations and analysis
of the area functions of rectangles, they capture combinatorial changes in the configuration
carefully and maintain the optimal two-rectangle covering during rotation.

We also study another variant of the problem in which both rectangles are allowed to
have arbitrary orientations independently while they remain disjoint. However, it seems that
the same approach does not apply to this generalized case; this is mainly because the area
functions are too complicated to analyze. We discuss about this issue at the end of the paper.

2 Covering Points by Two Disjoint Parallel Rectangles

Throughout this paper, a (directed) line ℓ or a rectangle is called θ-oriented if it is parallel (or
directed) to an orientation θ. We denote by Bθ(P) the θ-oriented bounding box of a point set
P .

2.1 Characterization

Let S be a set of n points in the plane. We assume that no three points lie on a line. For a
fixed orientation θ, let ℓ be a θ-oriented directed line which partitions S into two subsets Lℓ

and Rℓ, where Lℓ contains the points in S lying in the left side of ℓ and Rℓ contains the points
in S lying in the right side of ℓ; there can be at most two points lying on ℓ and each of them
can belong to either Lℓ or Rℓ.

Then the optimal disjoint two-rectangle covering problem with restriction to θ is to find a
θ-oriented line ℓ such that max{|Bθ(Lℓ)|, |Bθ(Rℓ)|} is minimized, where | · | returns the area of a
given rectangle. We call such a line ℓ an optimal partitioning line of S in θ. We denote by f(θ)
the optimal objective value for fixed orientation θ, that is, f(θ) = minℓ max{|Bθ(Lℓ)|, |Bθ(Rℓ)|}
for all θ-oriented directed lines ℓ.

The exact value of f(θ) can be computed in O(n log n) time [3]; once the points in S are
sorted in direction θ + π/2, we can find an optimal partitioning line in linear time by using a
plane sweep algorithm over S in the direction.

Obviously, there can be infinitely many optimal partitioning lines. Our algorithm implicitly
maintains an optimal partitioning line ℓ(θ) which is uniquely defined for any θ ∈ [0, π). For
the purpose, we consider a bit larger rectangles. For a θ-oriented directed line ℓ, let BL(ℓ) and
BR(ℓ) be the minimum θ-oriented rectangles such that both have one side on ℓ while BL(ℓ)
covers Lℓ and BR(ℓ) covers Rℓ. If we sweep the plane by ℓ in direction θ + π/2, it is easy to
see that |BL(ℓ)| is monotonically decreasing and |BR(ℓ)| is monotonically increasing. Note that
|BL(ℓ)| and |BR(ℓ)| are discontinuous during the plane sweep, but the discontinuity occurs only
when ℓ sweeps a point in S. We call ℓ a bisecting line in θ if max{|BL(ℓ)|, |BR(ℓ)|} is minimized
over all such θ-oriented lines, and denote it by ℓ(θ). For each orientation θ, ℓ(θ) is uniquely
determined because of the monotonicity of |BL(ℓ)| and |BR(ℓ)|. For simplicity of discussion,

2

ℓ(θ)

Bθ(L(θ))

Bθ(R(θ))
BL(ℓ(θ))

BR(ℓ(θ))

Figure 1: For an orientation θ, the θ-oriented bisecting line ℓ(θ) and its corresponding bounding
boxes. Shaded rectangles are the θ-oriented bounding boxes of L(θ) and of R(θ), and rectangles
with thick sides are BL(ℓ(θ)) and BR(ℓ(θ)).

we let L(θ) := Lℓ(θ) and R(θ) := Rℓ(θ). Figure 1 shows the θ-oriented bisecting line ℓ(θ) and
the corresponding bounding boxes.

In the following, we show that the bisecting line ℓ(θ) is indeed an optimal partitioning line.

p

ℓ ℓ′ ℓ(θ)

Bθ(L(ℓ′))
BR(ℓ′)

Figure 2: An illustration to the proof of Lemma 1.

Lemma 1 The θ-oriented bisecting line is an optimal partitioning line in θ.

Proof. Assume to the contrary that ℓ(θ) is not an optimal partitioning line, and let ℓ be an
optimal partitioning line in orientation θ that lies strictly to the left of ℓ(θ). This means that
there are some points from Rℓ lying between them or on the lines, and let p be the point closest
to ℓ among those points.

Consider the case that p lies on ℓ(θ). Any θ-oriented line through p is an optimal partitioning
line because we can partition S into the same subsets Lℓ and Rℓ along the line (Note that a
point on a partitioning line can belong either of sides.) Since ℓ(θ) is also a θ-oriented line
through p, ℓ(θ) is an optimal partitioning line.

Now consider the case that p lies strictly to the left of ℓ(θ). Then we can always choose a
θ-oriented line ℓ′ in between p and ℓ(θ) (See Figure 2.) By the definition of the bisecting line,
we have max{|BL(ℓ′)|, |BR(ℓ′)|} > max{|BL(ℓ(θ))|, |BR(ℓ(θ))|}. Since |BL(ℓ′)| < |BL(ℓ(θ))| by
the monotonicity of the area function, |BR(ℓ′)| must be larger than |BL(ℓ′)|.

However, p lies in the left side of ℓ′, therefore |Bθ(Rℓ)| > |BR(ℓ′)| > |BL(ℓ′)|. This implies
that |Bθ(Rℓ)| > max{|Bθ(Lℓ′)|, |Bθ(Rℓ′)|} and thus we get a contradiction to the optimality of

3

the partitioning line ℓ.

Consider now that we are allowed to change the orientation θ. Then the optimal disjoint
two-rectangle covering problem is to minimize f(θ) over θ ∈ [0, π). Before we continue further,
we need the following lemma.

Lemma 2 (Saha and Das [11] and Bae et al. [2]) Let P be a finite set of points in the
plane and (α, β) ⊂ [0, 2π) be an orientation interval where the sequence of the points touching
the sides of Bθ(P) remains the same for any θ ∈ (α, β). Then the area of Bθ(P) can be
expressed as a sinusoidal function of θ with angular frequency 2. That is, |Bθ(P)| is of the form
c1 sin(2θ + c2)+ c3, where c1, c2, and c3 are constants depending only on the points on the sides
of Bθ(P).

On the other hand, we can describe the θ-oriented bounding box Bθ(P) of a point set P by the
sequence of the four touching points, one for each side. Therefore, the optimal two-rectangle
covering can be described by a sequence of eight touching points, four from the θ-oriented
bounding box of L(θ) followed by the other four from the other bounding box. We denote by
Dθ the sequence of eight touching points at orientation θ and call the points the determinators
of the two bounding boxes.

During the rotation, we encounter a number of changes in Dθ, which are captured by events
of following two types:

1. a point in L(θ) moves into R(θ) or a point in R(θ) moves into L(θ), or

2. a side of Bθ(L(θ)) or Bθ(R(θ)) touches two points.

We call an event of the first type a crossing event, and an event of the second type a
non-crossing event. It is not difficult to see why we call such an event either crossing or a
non-crossing: conceptually speaking, a point moves from one set to the other set by crossing
the bisecting line.

Figure 3 shows how a crossing event occurs during rotation:

BL(ℓ(θ))

ℓ(θ)

p

BR(ℓ(θ))

BL(ℓ(θ′))

BR(ℓ(θ′))ℓ(θ′)

p

Figure 3: A crossing event occurs during the rotation from θ to θ′(> θ): the point p lies in the
right side of the bisecting line ℓ(θ) at θ but it lies in the left side of ℓ(θ′).

2.2 Algorithm

Our algorithm works by maintaining L(θ) and R(θ) as θ increases continuously from 0 to π and
minimizing the objective function in orientation intervals where no event occurs.

4

Algorithm ParallelTwoRectangleCover(S)
(∗ computes the optimal parallel two-rectangle covering over orientations in [0, π) ∗)
1. θ ← 0 and compute L(0), R(0), and D0

2. while θ < π
3. do compute the next non-crossing event at θn(> θ), assuming no crossing event
4. compute the next crossing event at θc in [θ, θn), if any
5. if θc is determined, then θ′ ← θc; otherwise, θ′ ← θn

6. minimize f(ϑ) in the interval [θ, θ′)
7. θ ← θ′

8. update Dθ, L(θ) and R(θ)
9. return the minimum objective value with its orientation

Non-crossing events A non-crossing event corresponds to an event when two points of L(θ)
(or R(θ)) lie on a side of Bθ(L(θ)) (Bθ(R(θ)), respectively). Hence, assuming no further crossing
event, the next non-crossing event after θ can be computed in constant time once we know the
convex hulls of L(θ) and of R(θ), and the determinators Dθ as in the well-known rotating caliper
technique [14]. For efficient handling of non-crossing events, we make use of the dynamic convex
hull structure by Brodal and Jacob [4]. It maintains the convex hull of the points in the plane
under insertion and deletion of points in amortized O(log n) time using O(n) space. So when
we update the invariants either by a non-crossing event or by a crossing event, we also update
the convex hulls of L(θ) and R(θ) in amortized O(log n) time. Also, we can easily bound the
number of non-crossing events during the algorithm: when a non-crossing event occurs at θ,
two points in S lie on a line which is either θ-oriented or (θ + π/2)-oriented. Since we increase
θ from 0 to π, the number of non-crossing events to be handled in the algorithm is O(n2).

Lemma 3 The number of non-crossing events is at most O(n2).

Minimizing the objective function It can be done in constant time to minimize f(ϑ) =
max{|Bϑ(L(ϑ))|, |Bϑ(R(ϑ))|} in domain [θ, θ′) where no event occurs due to some nice property
of the area functions. The following lemma states such property of the sinusoidal functions of
a certain form.

Lemma 4 A sinusoidal function of the form c1 sin(2θ + c2) + c3 in the domain [0, π) has at
most two local minima, where c1, c2, and c3 are constants. For any pair of sinusoidal functions
a and b, the equation a(ϑ) = b(ϑ) has at most two zeros in the domain unless those functions
are the same.

As observed in Lemma 2, both |Bϑ(L(ϑ))| and |Bϑ(R(ϑ))| are of the form stated in Lemma 4.
Thus, f(ϑ) can be expressed by at most three such pieces of functions, and hence f(ϑ) can be
minimized in constant time in the domain [θ, θ′).

2.3 Crossing events

What remains is to show how to compute the crossing events, and to bound the number of the
events. Before we proceed, we need the following lemma.

Lemma 5 The bisecting line ℓ(ϑ) moves continuously as ϑ increases from 0 to π.

Proof. Let tL(ϑ) := |BL(ℓ(ϑ))|, tR(ϑ) := |BR(ℓ(ϑ))|, and t(ϑ) := max{tL(ϑ), tR(ϑ)} be func-
tions of ϑ ∈ [0, 2π). First, observe that if t is continuous at every θ ∈ (α, β) for an interval

5

(α, β) ⊂ [0, 2π), then the bisecting line ℓ(ϑ) moves continuously over (α, β). Otherwise, if t is
continuous at θ but ℓ(θ) “jumps” at θ, we have two bisecting lines at θ, a contradiction to the
uniqueness of the bisecting line.

The main part of the proof shows that the possible number of jumps of ℓ(ϑ) is bounded
by a finite number, that is, ℓ(ϑ) can be seen as a piecewise continuous function, which directly
implies the lemma since its left and right limits are well defined at everywhere and if they are
distinct at some θ ∈ [0, π), we get two bisecting lines parallel to θ and thus a contradiction to
the uniqueness of the bisecting line.

The piecewise continuity of ℓ(ϑ) is shown through the following claim: if no two points lie
on ℓ(θ) for θ ∈ (α, β), t is continuous in (α, β). It is easy to see that if L(θ) and R(θ) remain
the same for every θ ∈ (α, β), both tL and tR are continuous in (α, β). Thus, we are done by
checking the continuity of t at θ such that L(θ − ε) 6= L(θ + ε) for sufficiently small ε > 0 and
exactly one point p ∈ S lies on ℓ(θ). Without loss of generality, we assume that p ∈ L(θ) and
p ∈ R(θ + ε) so that p crosses over the bisecting line at θ from left to right. Then, we have

tR(θ) ≤ lim
ϑ→θ+

tR(ϑ) and lim
ϑ→θ+

tL(ϑ) ≤ tL(θ).

(Note that the continuity of tL and tR in (θ − ε, θ + ε) is guaranteed by the uniqueness of
ℓ(θ), therefore their right limits at θ are well defined.) Moreover, t(θ) = tL(θ); otherwise,
t(θ) = tR(θ) ≤ limϑ→θ+ tR(ϑ) and thus p must have not crossed the bisecting line at θ.

There are two cases: t(θ + ε) = tL(θ + ε) or t(θ + ε) = tR(θ + ε) for sufficiently small ε > 0.
For the former case, we have

tR(θ) ≤ lim
ϑ→θ+

tR(ϑ) ≤ lim
ϑ→θ+

tL(ϑ) ≤ tL(θ).

If tL(θ) = limϑ→θ+ tL(ϑ), we are done. Otherwise, if tL(θ) > limϑ→θ+ tL(ϑ), then p should have
belonged to R(θ), not to L(θ), a contradiction to the assumption; indeed we have limϑ→θ+ tR(ϑ) =
|Bθ(R(θ) ∪ {p})| ≤ limϑ→θ+ tL(ϑ) = |Bθ(L(θ) \ {p})| < tL(θ) = t(θ). For the latter case, if
tL(θ) > limϑ→θ+ tR(ϑ), we have tL(θ) > limϑ→θ+ tR(ϑ) = |Bθ(R(θ) ∪ {p})| ≥ limϑ→θ+ tL(ϑ) =
|Bθ(L(θ) \ {p})|, a contradiction again as above. Hence, we have

tR(θ) ≤ lim
ϑ→θ+

tL(ϑ) ≤ tL(θ) ≤ lim
ϑ→θ+

tR(ϑ).

If tL(θ) = limϑ→θ+ tR(ϑ), we are done. If tL(θ) < limϑ→θ+ tR(ϑ), then for sufficiently small
ε > 0, t(θ + ε) = tR(θ + ε) > tL(θ) = t(θ) and if p did not cross the bisecting line, we have a
better solution, a contradiction to the optimality of ℓ(θ + ε).

Therefore, at any θ ∈ [0, π) such that no two points in S lie on ℓ(θ), t is continuous, implying
that ℓ(θ) moves continuously locally. Also, since we have at most O(n2) possibilities that two
points in S lie on ℓ(ϑ), this completes the proof of the lemma.

Now assume that a point is about to cross the bisecting line at orientation θ. Let pL ∈ L(θ)
be the last point lying on the right side of Bθ(L(θ)) in direction θ. Similarly, we let pR ∈ R(θ)
be the first point on the left side of Bθ(R(θ)) in direction θ. Since the bisecting line ℓ(ϑ) moves
continuously as ϑ increases from 0 to π, the crossing event occurs by pL or pR.

We consider the case that pL crosses ℓ(θ). The other case is symmetric. Consider the
moment of the crossing of pL: pL lies on ℓ(θ) and BL(ℓ(θ)) = Bθ(L(θ)). Here, we have two
possibilities; either another point of S also lies on ℓ(θ) or not. If pL is the only point on ℓ(θ), the
crossing event occurs because |Bθ(L(θ))| ≥ |Bθ(R(θ))| and |Bθ+ε(L(θ))| > |Bθ+ε(R(θ)∪ {pL})|
for some arbitrarily small positive ε.

6

We characterize crossing events as follows. Let fL(θ) := |Bθ(L(θ))| and fR(θ) := |Bθ(R(θ))|.
Then, f(θ) = max{fL(θ), fR(θ)}. We also let gL(θ) and gR(θ) denote the areas of Bθ(L(θ) \
{pL}) and Bθ(R(θ) ∪ {pL}), respectively, and let g(θ) := max{gL(θ), gR(θ)}.

Lemma 6 If a crossing event occurs at θ and pL crosses the bisecting line ℓ(θ), either (1) two
points of S, including pL, lie on ℓ(θ) or (2) f(θ) = g(θ).

Proof. Suppose that S ∩ ℓ(θ) = {pL} but f(θ) 6= g(θ). If f(θ) > g(θ), then there always exists
a small positive δ such that f(θ − ε) > g(θ − ε) for any 0 < ε < δ since f(θ) and g(θ) are
continuous in every domain where no crossing event occurs. This contradicts the optimality of
ℓ(θ − ε). Now assume that f(θ) < g(θ). Then again there always exists a small positive δ such
that max{|Bθ+ε(L(θ))|, |Bθ+ε(R(θ))|} < max{|Bθ+ε(L(θ)\{pL})|, |Bθ+ε(R(θ)∪{pL})|} for any
0 < ε < δ. This contradicts the optimality of ℓ(θ + ε).

The next crossing event of case (1) from the current θ can be predicted easily: we check if
the line through pL and pR is parallel to some θ′ ∈ [θ, θn) for the case where two points lying
on the bisecting line are pL and pR. Otherwise, it occurs simultaneously with a non-crossing
event so that we check if pL crosses the bisecting line or not at each of such non-crossing events.
Thus, the candidates of the next crossing event of case (1) can be computed in constant time
at each loop of the algorithm.

For a crossing event of case (2), we monitor not only f(θ) but also g(θ) and check when they
have the the same value after the current orientation θ. This can be done by solving f(ϑ) = g(ϑ)
in the interval [θ, θn) where no non-crossing event occurs and then taking the smallest zero, at
which we would have the next crossing event. Recall that ℓ(ϑ) contains at most one point of S
in the interval [θ, θn). By Lemma 4, each of f(ϑ) and g(ϑ) has at most two breakpoints in the
domain [θ, θn) (where fL(ϑ) = fR(ϑ) or gL(ϑ) = gR(ϑ) holds) and the equation f(ϑ) = g(ϑ)
has at most a constant number of zeros (roughly at most 24.) The case when pR crosses ℓ(θ)
can be handled with the functions hL and hR defined symmetrically to be |Bθ(L(θ) ∪ {pR})|
and |Bθ(R(θ) \ {pR})|, and with h(θ) = max{hL(θ), hR(θ)}. Since the functions f , g, and h
are all sinusoidal in the domain, we can compute all their crossings in constant time. These
functions are determined once Dθ is fixed. Therefore, at each iteration of the algorithm, we can
find the candidates of the next crossing event of case (2) in constant time. Note that it need
not necessarily be true that we have a crossing event whenever f(θ) = g(θ) or f(θ) = h(θ).
Thus, when we compute the next crossing event, we should test if it is a “real” crossing event;
this can be done simply by checking the local behavior of the functions also in constant time.

To bound the total number of crossing events, we count the number of possible crossing
events that occur on a certain point p ∈ S during the rotation. For this, we need the following
lemma. Let ℓp(θ) denote the θ-oriented directed line through p.

Lemma 7 The sequence of the four determinators of the θ-oriented bounding box of the points
lying strictly in the left side of ℓp(θ) changes at most O(n) times while θ increases continuously
from 0 to π.

Proof. Let pθ be the closest point to ℓp(θ) among the points Lℓp(θ) lying in the left side
of ℓp(θ). We rotate ℓp(θ) around p by increasing θ. Whenever a side of the bounding box
Bθ(Lℓp(θ)), except the one determined by pθ, touches two points p1 and p2 in S, this corresponds
to a combinatorial change in the quadrant hull of S [2]; the quadrant hull is also known as
the rectilinear convex hull, and there are only linear number of combinatorial changes to the
quadrant hull while we rotate the point set from 0 to π. Observe that there always exists a

7

quadrant defined by the line through p1 and p2, and a line orthogonal to the side touching p1

and p2 such that it contains p1 and p2 on one of its sides but contains no points of S in its
interior. Therefore, there are at most O(n) determinator changes in total to the three sides.

For a point q, we define a function dq(θ) be the signed distance from q to ℓp(θ), being
positive when q lies to the left of ℓp(θ). This function can be expressed as follows:

dq(θ) := |pq| sin(φq − θ),

where φq is the orientation of the directed line from p to q.
We will look into the arrangement of the graphs of the functions dq for all q ∈ S, q 6= p in

the domain [0, π). Observe that pθ changes at an orientation θ if one of the following conditions
hold: (1) dq(θ) = 0 for any q ∈ S \ {p}, or (2) dq(θ) = dr(θ) > 0 for q 6= r and ds(θ) > dq(θ) for
all s ∈ Lℓp(θ) \ {q, r}. Consider now the graph of the function dq for every q ∈ S \ {p}, and let
C be the set of all the maximal pieces of the graphs lying above the x-axis. Then the number
of changes of pθ during the rotation is upper bounded by the combinatorial complexity of the
lower envelope of the arrangement of C. Observe that |C| ≤ n− 1.

To bound the complexity of the lower envelope, we let C1 ⊆ C be the set of curves intersect-
ing the vertical line through the origin and C2 ⊆ C be the set of curves intersecting the vertical
line through the point (π − ε, 0) for sufficiently small positive ε. Observe that C1 ∪ C2 = C
since each curve in C is defined by a graph of a sinusoidal function dq of angular frequency 1.
Moreover, since there is a vertical line intersecting all the curves in C1, the lower envelope of
C1 has complexity linear in |C1| [12]. This also holds for the curves in C2. Clearly, the lower
envelope of C is the lower envelope of those of C1 and C2, and its combinatorial complexity is
linear in |C|. Therefore, we conclude that the lower envelope of C has O(n) complexity, and pθ

changes at most O(n) times.

Now we are ready to bound the number of crossing events.

Lemma 8 The number of solutions to f(ϑ) = g(ϑ) or f(ϑ) = h(ϑ) for ϑ ∈ [0, π) is at most
O(n2). Also, there are at most O(n2) crossing events.

Proof. Recall Lemma 6. The number of crossing events falling in case (1) is bounded by O(n2),
simply because there are at most O(n2) such distinct orientations. So from now on we assume
that there is at most one point lying on the bisecting line, and count the number of the crossing
events of case (2). We discuss about the case where f(θ) = g(θ) only since the other case is
symmetric. Note that f(θ) = g(θ) if and only if fL(θ) = gR(θ).

Let fp
L(θ) := |Bθ(Lℓp(θ))| and gp

R(θ) := |Bθ(Rℓp(θ))|, where p belongs to Lℓp(θ). In orientation
θ, if p is the rightmost point of L(θ), then fp

L(θ) = fL(θ) and gp
R(θ) = gR(θ). Hence, in this

proof, we rotate ℓp(θ) by increasing θ and count the number of times when fp
L(θ) = gp

R(θ)
for all p ∈ S, which bounds from above the possible number of the orientations θ such that
f(θ) = g(θ).

Consider an orientation interval (α, β) where we have no change in the 8 determinators
on the sides of the two bounding boxes. In such an interval, fp

L(θ) and gp
R(θ) are sinusoidal

functions by Lemma 2, and their graphs intersect at most twice by Lemma 4. Therefore, in
(α, β), there are at most two such θ that fp

L(θ) = gp
R(θ).

Thus, the only thing left is to bound the number of such intervals (α, β). Lemma 7 tells
us that the sequence of the four determinators of Bθ(Rℓp(θ)) changes at most O(n) times.
For Bθ(Lℓp(θ)), we have one fixed determinator p; thus the number of changes in its four

8

determinators is also bounded by O(n). For each point p ∈ S, we have O(n) such intervals
(α, β), and thus the first statement is shown.

Also, whenever a crossing event of case (2) occurs, a point in S lies on the bisecting line
ℓ(θ) and we have f(θ) = g(θ) or f(θ) = h(θ) by Lemma 6. Thus, the number of crossing events
is bounded by O(n2).

Consequently, we spend at most O(n2) time to compute all events in total, and thus we
repeat the main loop O(n2) times while each run of the main loop takes O(log n) amortized
time. Finally, we conclude the following.

Theorem 1 Given a set S of n points, an optimal pair of two disjoint and parallel rectangles
containing all points in S can be computed in O(n2 log n) worst-case time and O(n) space.

Tight example construction Here, we describe how to construct a problem instance which
yields at least Ω(n2) number of events; thus, our upper bound is asymptotically tight. For
any positive integer n > 3, let m = 2⌊n4 ⌋ + 1. Then, m is an odd number, m = Θ(n), and
n−m = Θ(n). Now, place m points at the corners of a regular m-gon bounded by a unit circle
centered at the origin, with one point placed at coordinate (0, 1). The remaining n−m points
are placed in a disk U centered at the origin with radius ε > 0, where ε is sufficiently small
positive number. Let Sn be this constructed set of points.

(a)

ℓ(0)

(b)

ℓ(2

7
π)

Figure 4: Tight example construction when n = 13 and m = 7. The optimal two-rectangle
covering in orientation (a) 0 and (b) 2π/m = 2

7π. The light gray rectangle is Bθ(L(θ)) and the
dark gray rectangle is Bθ(R(θ))

The optimal two-rectangle coverings of S = Sn in orientation θ are as follows: If ε is small
enough, one of L(0) and R(0) includes all the points in S ∩ U . Without loss of generality,
suppose that L(0) includes S ∩ U as shown in Figure 4(a). On the other hand, at orientation
2π/m, R(2π/m) consists of the points lying in U ; this is easy to see since our point set is
symmetric except for points lying in U (see Figure 4(b)). Indeed, L(2iπ/m) includes the points
lying in U but L((2i + 1)π/m) does not, for i = 0, . . . , ⌊m/2⌋. Thus, we have at least n −m
crossing events per each π/m rotation of orientation, which implies that we have at least Ω(n2)
number of events for the instance Sn.

9

3 Covering Points by Two Disjoint Non-Parallel Rectangles

In this section, we consider the two-rectangle covering problem where two bounding boxes are
not necessarily parallel. More specifically, we find an optimal pair of two disjoint rectangles
containing the given set S of points such that one rectangle is axis-parallel and the other
rectangle is not necessarily axis-parallel. Informally speaking, one rectangle is free to rotate
and we call it the free rectangle. We further consider the variant of the problem where both
rectangles are free.

ℓ
B2

B1

ℓ

B1

B2

Figure 5: There always exists a separating line ℓ that supports a side of the axis-parallel
rectangle B1 (left) or a side of the free rectangle B2 (right).

Consider an optimal solution for S, consisting of an axis-parallel rectangle B1 and a θ-
oriented rectangle B2 for 0 ≤ θ < π/2. We observe that there always exists a line ℓ separating
B1 and B2 which supports a side of B1 or a side of B2. We have two possibilities as shown in
Figure 5:

1. ℓ supports a side of B1, therefore, is either horizontal or vertical, or

2. ℓ supports a side of B2.

Our algorithm, to be described below, simply seeks an optimal two-rectangle covering for S in
each case above, from which we find the optimal one. The following theorem summarizes the
result.

Theorem 2 Let S be a set of n points in the plane. One can compute in O(n2 log n) time with
O(n) space an optimal pair of two disjoint rectangles covering all points in S such that one is
axis-parallel and the other is in arbitrary orientation.

Remind that Bθ(S) is the θ-oriented bounding box of the set S.

Case 1 We assume without loss of generality that ℓ is horizontal and it supports the top side
of the axis-parallel rectangle. The other cases can be handled in a symmetric way. Since the top
side contains a point in S, we have only n candidates for ℓ. Thus, we are done by computing
the possible minimum free rectangle above the horizontal line ℓ through each p ∈ S.

Let p1, . . . , pn be the list of the points in S sorted in the increasing order of their y-
coordinates, and ℓi be the horizontal line through pi. Let S1(i) := {p1, . . . , pi} be the subset of
S consisting of the points lying on or below ℓi and S2(i) := S \ S1(i). Note that there can be
two points lying on ℓi, and we consider both of them to be in S1(i): if one of them does not
lie on the top side of B0(S1(i)), it must be the bottommost corner of the other rectangle and
there exists a separating line supporting Bφ(S2(i)), which falls in case (2).

10

We let f1(i) to be the area of B0(S1(i)) and

f2(i) := min
φ:Bφ(S2(i)) is disjoint from ℓi

|Bφ(S2(i))|.

We then seek a point pi ∈ S such that max{f1(i), f2(i)} is minimized for all 1 ≤ i ≤ n. Hence,
the most difficult part of the algorithm is to evaluate f2(i) in this case.

To evaluate f2(i), we compute the range Φi of φ where Bφ(S2(i)) is disjoint from ℓi. Since
S2(i) is fixed, we can compute the description of |Bϕ(S2(i))| as a function of ϕ ∈ [0, π/2) in
O(n log n) time by the rotating caliper technique [14]. If Bφ(S2(i)) and ℓi are not disjoint, then
one corner of the rectangle lies below ℓi. Thus, we compute the locus of the corners of Bϕ(S2(i))
as ϕ increases from 0 to π/2. This locus is a simple closed curve consisting of O(n) circular arcs;
this curve is known as the angle hull AH := AH(CH(S2(i))) of the convex hull CH(S2(i)) of
S2(i), defined to be the locus of points x such that the two tangent lines to CH(S2(i)) through
x make the right angle [6]. See Figure 6.

ℓi

CH(S2(i))

AH(CH(S2(i)))

Figure 6: The angle hull AH(CH(S2(i))) (left), and the bounding box of S2(i) at an intersection
of ℓi with the angle hull (right).

Each point x on AH is mapped to an orientation φ ∈ [0, π/2) of the bounding box of S2(i)
one of whose corners lies at point x. Moreover, each endpoint of an arc of AH corresponds to
a breakpoint of the function |Bϕ(S2(i))|, that is, an orientation φ where two points of S2(i) lie
on a side of Bφ(S2(i)). The following lemma follows directly from earlier results [14].

Lemma 9 The value of f2(i) is realized as |Bφ(S2(i))| such that φ ∈ Φi, and either (1) two
points of S2(i) lie on one side of Bφ(S2(i)) or (2) one corner of Bφ(S2(i)) lies on ℓi.

The first case in the above lemma can be handled by checking each breakpoint of |Bϕ(S2(i))|;
construct Bφ(S2(i)) for each such breakpoint φ and check whether it intersects ℓi or not. This
takes O(1) time per each breakpoint. For the second case, we compute the intersection of ℓi

and AH in O(n) time and take the minimum value among |Bφ(S2(i))| for φ corresponding to
each intersection point between ℓi and AH. Then, f2(i) is the minimum value among those
computed as above.

All this process for evaluating f2(i) takes only O(n) time once the convex hull of S2(i) is
computed. Hence, for each i, we can compute in O(n log n) time the convex hull of S2(i), the
description of function |Bφ(S2(i))|, the angle hull AH, the intersection of ℓi and AH, and the
value of f2(i).

Lemma 10 An optimal solution for case 1 can be found in O(n2 log n) time with O(n) space.

11

ℓ1

ℓ2

ℓ3

ℓ4

ℓ1

ℓ2

Figure 7: An example of points S where f2(i) is not monotone. Observe that f2(3) < f2(1) <
f2(4) < f2(2).

Remarks : One might be curious about whether f2(i) is monotone or not; if it were monotone,
one could apply a binary search on i to get a better performance. However, it is not necessarily
true by a simple example. See Figure 7.

The running time of the algorithm can be improved to O(n2) by using the dynamic convex
hull structure by Brodal and Jacob [4]. But this is not very meaningful since our algorithm for
the other case takes O(n2 log n) time anyway.

Case 2 In this case, we use a bit different approach. Consider a bipartition L and R of S
by a partitioning line ℓ, where R is the set of points lying to the right of ℓ and L = S \ R.
Then, the set of valid orientations for ℓ to get the bipartition is expressed as an orientation
interval (α, β) ⊂ [0, 2π) (after a proper rotation of the whole S). An optimal solution with
an axis-parallel rectangle B0(R) and a free rectangle Bθ(L) for θ ∈ (α, β) can be found by
computing B0(R) and finding the minimum Bθ(L) for θ ∈ (α, β) such that both are disjoint
from each other.

More formally, we let ℓp(θ) be the θ-oriented directed line passing through p ∈ S, and let
Lp(θ) and Rp(θ) be the bipartition of S by ℓp(θ) where p ∈ Lp(θ). Let fp

1 (θ) := |B0(Rp(θ))| and
fp
2 (θ) := |Bθ(Lp(θ))|. We rotate ℓp(θ) by increasing θ from 0 to 2π and gather local minima of

max{fp
1 (θ), fp

2 (θ)}. By Lemmas 2, 4, and 7, for fixed p ∈ S, fp
2 (θ) has O(n) breakpoints and

is divided into the same asymptotic number of sinusoidal pieces, in each of which we have no
change of the determinators of Bθ(Lp(θ)) and further those of B0(Rp(θ)). Here, we redefine
three types of events to be handled.

• Non-crossing event : When the determinators of Bθ(Lp(θ)) changes while Lp(θ) remains
the same.

• Crossing event : When Lp(θ) changes, that is, another point q ∈ S lies on ℓp(θ).

• Rectangle-touching event : When B0(Rp(θ)) touches ℓp(θ), that is, ℓp(θ) is tangent to
B0(Rp(θ)).

Our algorithm for this case is described as follows:

Algorithm OneAxisParallelAndOneFreeRectangleCoverCase2(S)
(∗ computes the optimal two rectangles in Case 2 ∗)
1. for each p ∈ S
2. do initialize a dynamic convex hull CH and an event queue Q
3. compute Lp(0) and add the points in Lp(0) into CH, and compute Rp(0) and

B0(Rp(0))

12

4. θ ← 0
5. compute all crossing events for p and put them into Q
6. compute all non-crossing and rectangle-touching events before the first crossing

event and put them into Q
7. while θ < 2π
8. do pop the next upcoming event at θ′ from Q
9. if for any ϑ ∈ (θ, θ′), B0(Rp(ϑ)) dose not intersect ℓp

10. then minimize max{fp
1 (ϑ), fp

2 (ϑ)} over ϑ ∈ [θ, θ′)
11. if the event at θ′ is a crossing event
12. then update Lp(θ

′), Rp(θ
′), CH, and B0(Rp(θ

′))
13. compute all non-crossing and rectangle-touching events between θ′

and the next crossing event, and put them into Q
14. θ ← θ′

15. return the minimum objective value with its orientation

Crossing events occur when q ∈ S with q 6= p lies on ℓp(θ); thus, they can be computed
before the while loop. Since Lp(θ) and Rp(θ) do not change between two consecutive crossing
events, we can compute all non-crossing and rectangle-touching events in time proportional to
the number of the events with CH and B0(Rp(θ)). By Lemma 7, we know that the number of
possible non-crossing events is O(n) for each p ∈ S. The number of rectangle-touching events
can be bound by the number of crossing events; the number of lines through p which are tangent
to a rectangle is at most two unless p is a corner of the rectangle.

Lemma 11 The total number of events while θ increases from 0 to 2π is at most O(n) for each
p ∈ S.

Finally, we conclude the following.

Lemma 12 For each point p ∈ S, the algorithm above computes all the local minima of
max{fp

1 (θ), fp
2 (θ)} in O(n log n) time with O(n) space for θ ∈ [0, 2π). Thus, an optimal so-

lution of case 2 can be found in O(n2 log n) time and O(n) space.

Proof. For each p ∈ S, the initialization step (Lines 2–5) takes O(n log n) time. Each iteration
of the while loop takes O(log n) time: computing non-crossing and rectangle-touching events
takes O(1) time per each. Each operation on the event queue Q takes O(log n) time by using
a standard priority queue. Computing local minima in the domain [θ, θ′) takes O(1) time by
Lemma 4 since fp

1 (ϑ) is constant and fp
2 (ϑ) is sinusoidal with angular frequency 2 in [θ, θ′) for

fixed p ∈ S by Lemma 2. For each crossing event, only one point is moved from one side to the
other side; thus, it takes O(log n) time to update the data structures and the invariants of the
algorithm. Finally, Lemma 11 states that we have at most O(n) events and hence that we run
the main loop O(n) times.

3.1 Some remarks about two free rectangles

We conclude this paper with discussion about the case of two disjoint free rectangles. To express
the orientations of two such rectangles, we use two symbols θ and φ for their orientations. As
observed above, for any optimal disjoint two free rectangles (B1, B2) for S, there exists a line
ℓ that separates B1 and B2 and supports one side of the two rectangles. We thus can search

13

only those rectangles such that B1 is θ-oriented, B2 is φ-oriented, B1 and B2 are disjoint, and
a θ-oriented line ℓ supporting a side of B1 separates B1 and B2 for each θ, φ ∈ [0, 2π).

For each p ∈ S, we let ℓp(θ) be the directed line through p in direction θ and Lp(θ) and
Rp(θ) be defined as above. Also, let fp

1 (θ) := |Bθ(Lp(θ))| and fp
2 (θ) := minφ∈Φp(θ) |Bφ(Rp(θ))|,

where Φp(θ) is the set of orientations φ such that Bφ(Rp(θ)) is disjoint from ℓp(θ). As in Case
1 of the above, there always exists φ ∈ Φp(θ) such that fp

2 (θ) = |Bφ(Rp(θ))| and either (1) a
corner of Bφ(Rp(θ)) lies on ℓp(θ) or (2) two points in Rp(θ) lies on a side of Bφ(Rp(θ)). Note
that for fixed θ we can compute each orientation φ where a corner of Bφ(Rp(θ)) lies on ℓp(θ)
by intersecting the angle hull AH and ℓp(θ). The difficulty here is that we should search every
θ ∈ [0, 2π), and thus each such φ is indeed expressed as a function φ(θ) of θ. Unfortunately,
such a function φ(θ) is very complicated; it appears as the inverse of the cosine of a function of
sin θ and cos θ containing a square root term:

arccos

(

sin θ (c1 sin θ)± cos θ

√

1− (c1 sin θ)2
)

+ c2,

where c1 and c2 are constants. It seems very difficult to analyze the functions of this form and
to use the same approach as in the previous variations of the problem.

References

[1] P. Agarwal and M. Sharir. Efficient algorithms for geometric optimization. ACM Comput.
Surveys, 30:412–458, 1998.

[2] S. W. Bae, C. Lee, H.-K. Ahn, S. Choi, and K.-Y. Chwa. Maintaining extremal points and
its applications to deciding optimal orientations. In Proc. 18th Annu. Internat. Sympos.
Algo. Comput. (ISAAC), volume 4835 of LNCS, pages 788–799, 2007.

[3] S. Bespamyatnikh and M. Segal. Covering a set of points by two axis-parallel boxes.
Inform. Process. Lett., 75:95–100, 2000.

[4] G. S. Brodal and R. Jacob. Dynamic planar convex hull. In Proc. 43rd Annu. IEEE
Sympos. Found. Comput. Sci. (FOCS), pages 617–626, 2002.

[5] G. Frederickson and D. Johnson. Generalized selection and ranking: sorted matrices. SIAM
Journal on Computing, 13:14–30, 1984.

[6] F. Hoffmann, C. Icking, R. Klein, and K. Kriegel. The polygon exploration problem. SIAM
J. Comput., 31(2):577–600, 2001.

[7] J. W. Jaromczyk and M. Kowaluk. Orientation indenpendent covering of point sets in r2

with pairs of rectangles or optimal squares. In Proc. Europ. Workshop Comput. Geom.
(EuroCG), pages 54–61, 1996.

[8] M. Kats, K. Kedem, and M. Segal. Discrete rectilinear 2-center problem. Comput. Geom.:
Theory and Appl., 15:203–214, 2000.

[9] M. Katz and M. Sharir. An expander-based approach to geometric optimization. SIAM
J. Comput., 26:1384–1408, 1997.

[10] N. Megiddo. Applying parallel computation algorithms in the design of serial algorithms.
J. ACM, 30:852–865, 1983.

14

[11] C. Saha and S. Das. Covering a set of points in a plane using two parallel rectangles. In
Proc. of Internat. Conference on Comput.: Theory and Appl. (ICCTA), pages 214–218,
2007.

[12] M. Sarir and P. Agarwal. Davenport-Schinzel Sequences and Their Geometric Applications.
Cambridge University Press, New York, 1995.

[13] M. Segal. Covering point sets and accompanying problems. PhD thesis, Ben-Gurion Uni-
versity, Israel, 1999.

[14] G. Toussaint. Solving geometric problems with the rotating calipers. In Proc. of IEEE
MELECON’83, Athens, Greece, 1983.

15

