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Abstract

Given a set P = {P0, . . . , Pk−1} of k convex polygons having n vertices in total in the
plane, we consider the problem of finding k translations τ0, . . . , τk−1 of P0, . . . , Pk−1 such
that the translated copies τiPi are pairwise disjoint and the area or the perimeter of the
convex hull of

⋃k−1
i=0 τiPi is minimized. When k = 2, the problem can be solved in linear time

but no previous work is known for larger k except a hardness result: it is NP-hard if k is part
of input. We show that for k = 3 the translation space of input polygons can be decomposed
into O(n2) cells in each of which the combinatorial structure of the convex hull remains the
same. Moreover, we show that the description of the objective function for each cell can be
fully described using constant space and the function description for a neighboring cell can
be obtained in constant time by using coherence. Based on this decomposition, we present
a first O(n2)-time algorithm that finds optimal translations of input polygons minimizing
the area or the perimeter of the corresponding convex hull.

1 Introduction

We consider the problem of finding translations of k convex polygons such that they are contained
in a smallest possible convex region while their interiors are disjoint. This problem can be
modelled as follows: given a set P = {P0, . . . , Pk−1} of k convex polygons in the plane with n
vertices in total, find k translations τ0, . . . , τk−1 of P0, . . . , Pk−1 such that the translated copies
τiPi’s, for 0 6 i 6 k − 1, do not overlap each other and the area or the perimeter of the convex
hull of

⋃k−1
i=0 τiPi is minimized.

This problem can be seen as a generalization of a packing problem of finding a smallest region,
called a container, of a given shape (such as a disk, a square, or a rectangle) that packs the input
objects under translations. Packing problems have received significant attention in a number of
disciplines. For instance, it goes back to Kepler’s conjecture (1611) on sphere packing in three-
dimensional Euclidean space [8]. Sugihara et al. [11] considered a related problem of minimizing
the disk bundling a set of disks with applications to minimizing the sizes of holes through which
sets of electric wires are to pass. They proposed a heuristic method that makes use of the
Voronoi diagram of circles. Milenkovic studied the packing of a set of polygons into another
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polygon container with applications in the apparel industry [10]. He gave a O(nk−1 log n) time
algorithm for packing k convex n-gons under translations into a minimum area axis-parallel
rectangle container. Later, Alt and Hurtado [3] presented a near-linear time algorithm that
packs two convex polygons into a minimum area or perimeter rectangle. Recently, Egeblad et
al. [6] presented an efficient method for packing polytopes into another polytope container under
translation in arbitrary dimension.

Much less is known about the case when the container has no restriction on its shape. For
k = 2, Lee and Woo [9] presented a linear time algorithm for finding a translation τ1 of P1 that
minimizes the convex hull area of P0 ∪ τ1P1. It is not difficult to see that their algorithm also
works for minimizing the perimeter of the convex hull. When k is part of input, the problem is
shown to be NP-hard even if the polygons are rectangles [4], which was done by reducing the
partition problem [7] into this problem.

Later, Tang et al. [12] considered the case the the objects can be reoriented freely and gave
an O(n3)-time algorithm for finding a rigid motion that minimizes the area of the convex hull.
Very recently, Ahn and Cheong [1, 2] presented a near-linear time approximation algorithm for
finding a rigid motion that minimizes either the perimeter or the area of the convex hull.

Our results. We study the problem of bundling three convex polygons under translations
where we restrict their interiors to remain disjoint and their orientations to be fixed while we
allow translating them. Without loss of generality, we assume that P0 is stationary. We show
that the translation space of P1 and P2 can be decomposed into O(n2) cells in each of which
the combinatorial structure of the convex hull remains the same. Moreover, we show that the
description of the objective function for each cell can be fully described using constant space and
the function description for a neighboring cell can be obtained in constant time by coherence.
This was done by a careful analysis on all event configurations at which the combinatorial
structure of the convex hull changes. We then present an O(n2)-time algorithm that returns an
optimal pair of translations that minimizes the area or the perimeter of the convex hull of the
union.

2 Preliminaries

Let P0, . . . , Pk−1 be k convex polygons in R2 with n vertices in total. For a vector τ ∈ R2k,
we write τ = (τ0, . . . , τk−1), where τi ∈ R2. The translate of Pi by τi, denoted by τiPi, is
{a+ τi | a ∈ Pi}. We let U(τ) =

⋃k−1
i=0 τiPi and let conv(τ) := conv(U(τ)).

Ahn and Cheong [2] studied the area and perimeter functions and observed the following.
Lemma 1 (Ahn and Cheong [2]) The function f : R2k → R with f(τ) = |conv(τ)| is convex for
any k > 2. The function g : R2k → R with g(τ) = ‖conv(τ)‖ is convex and piecewise linear for
k = 2, but this is not necessarily the case for k > 2.

Our problem can be viewed as an optimization problem of minimizing the area ‖conv(τ)‖ or
the perimeter |conv(τ)| over τ ∈ R2k subject to τiPi ∩ τjPj = ∅ for all 0 6 i < j 6 k − 1. One
can reduce the search space by a simple observation.
Lemma 2 For the bundling problem with respect to either area or perimeter, there is an
optimal translation vector τ∗ ∈ R2k such that the union U(τ∗) is connected, that is, every
translate touches another translate under τ∗.
Proof. If U(τ∗) is connected, we are done. Suppose that U(τ∗) consists of more than one
connected components and C is any one of them. If C appears on the boundary of the convex
hull conv(τ∗), then one can clearly translate C to have less area and perimeter. Thus, C is
completely contained in the interior of conv(τ∗). We then translate it freely to make it touch
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with any other component of U(τ∗), keeping it inside conv(τ∗). This translation process makes
no change of their convex hull but decrease the number of connected components by one. We
can repeat this process for any connected component of U(τ∗) until we finally have a single
connected component.

We can thus concentrate only on the cases where the k polygons are connected. We shall call
τ ∈ R2k a configuration if U(τ) is connected. A configuration τ is feasible if and only if the
interiors of the translates are disjoint under τ . Thus, our goal is to find an optimal feasible
configuration with respect to area or perimeter.

Let K be the set of configurations for given k polygons P0, . . . , Pk−1. Each configuration
τ ∈ K is associated with several properties describing the structure of the convex hull conv(τ).
If τiPi and τjPj are in contact, then a vertex v of Pi lies on an edge e of Pj under τ , or vice
versa. We call the pair (v, e) a contact induced by τ . Let C(τ) be the set of contacts induced
by a configuration τ ∈ K. Note that Lemma 2 implies that |C(τ)| > k − 1.

The convex hull conv(τ) is bounded by a closed polygonal curve consisting of some edges of
the translated polygons τiPi’s and line segments connecting two vertices of the τiPi’s. We call
such a segment of the latter type a bridge. More specifically, there is a bridge (u, v) connecting a
vertex u of a polygon and a vertex v of another polygon if these polygons appear consecutively
along the boundary of the convex hull. Note that a bridge (u, v) is a degenerate edge of length
0 if u and v are in contact. Let H(τ) be the set of those pairs of vertices induced by τ ∈ K. Two
configurations τ, τ ′ ∈ K are said to have the same combinatorial structure if both C(τ) = C(τ ′)
and H(τ) = H(τ ′) hold.

In the following sections, we will show that the configuration space can be decomposed into
a number of cells in which the configurations have the same combinatorial structure, so that the
area or the perimeter function is described and minimized. For convenience of elaboration, we
make a general position assumption on input polygons in the sense that no two polygon edges
are parallel.

3 The Configuration Space for Three Polygons

In this section, we study the configuration space of three convex polygons P0, P1 and P2 under
translation. We first investigate the configuration space by introducing a parametrization of
configurations. Then we define events and event curves in the configuration space from which
the combinatorial structure of the convex hull or the motion of the input polygons changes, and
analyze their complexity.

3.1 Parametrization of configurations

As a warm-up exercise, consider the case of k = 2 where two convex polygons P0 and P1 are given.
By Lemma 2, any configuration τ ∈ K requires P1 to touch P0. Imagine that P0 is stationary and
P1 translates around P0 in the counter-clockwise direction, keeping them touching each other,
until P1 then reaches back to the initial position. The set K of configurations thus forms a space
homeomorphic to a unit circle. This motion of P1 around P0 is piecewise affine, and the total
distance that P1 travels is exactly |P0| + |P1|. Therefore, letting L := |P0| + |P1|, the interval
[0, L) fully describes the configuration space K: For any λ ∈ [0, L), let τ(λ) be the configuration
whose corresponding translated copy of P1 is a snapshot at a moment when P1 travels a distance
of exactly λ around P0 from its initial position.

We now turn to the case of k = 3, where three convex polygons P0, P1, and P2 are given
as input. Lemma 2 implies that in any configuration τ ∈ K, at least one of the three polygons
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Figure 1: Sliding P1 and P2 around P0: we parameterize the configuration space K0 by a pair
of parameters (λ1, λ2) for λ1 ∈ [0, L1) and λ2 ∈ [0, L2).

touches the other two, simultaneously. Without loss of generality, we assume that both P1 and
P2 translate around P0 in the counter-clockwise direction keeping touching P0, while P0 remains
stationary. Let K0 ⊂ K be the space of configurations in which τ0 = (0, 0) and P0 touches both
of P1 and P2. As discussed above for k = 2, the distance that each of P1 and P2 travels around
P0 is exactly L1 and L2, respectively, where L1 := |P0|+ |P1| and L2 := |P0|+ |P2|. See Figure 1.
Then, any pair (λ1, λ2) ∈ [0, L1)× [0, L2) corresponds to a configuration τ(λ1, λ2) when P1 and
P2 travel around P0 by distance exactly λ1 and λ2, respectively, from their initial positions.

Notice that the definition of configurations do not prevent P1 and P2 from overlapping each
other; rather, the translates of P1 and P2 around P0 are independent, and are determined
independently by two different parameters λ1 and λ2, respectively. We denote by P1(λ1) and
P2(λ2) the translated copy of P1 and P2, respectively, corresponding to the parameters λ1 and
λ2, respectively. By abuse of notation, we shall call a pair (λ1, λ2) a configuration in K0 and
regard K0 to be [0, L1)× [0, L2).

3.2 Events and event curves

Recall that any configuration τ ∈ K0 is associated with the set C(τ) of contacts and the set
H(τ) of bridges of the corresponding convex hull conv(τ). These two combinatorial associates
determine the structure of the convex container and the motion of the polygons, thus being
helpful in describing the objective function on the configuration space as will be shown in next
sections. One natural approach would decompose the configuration space, K0 into cells in each
of which C(τ) and H(τ) remain the same for all configurations τ in the cell.

We call a configuration τ = (λ1, λ2) ∈ K0 an event if it is one of the following cases:

C0 event A vertex of P1(λ1) or P2(λ2) reaches a vertex of P0; that is, a vertex-vertex contact

(b)(a)

`

P0

P2(λ2)

P1(λ1)
P0

`

P0

(c)

e

v

P2(λ2)

P1(λ1)
P2(λ2)

P1(λ1)

Figure 2: Corresponding translates of the three polygons at events of different types: (a) C2
event, (b) H1 event, and (c) H2 event.
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occurs between P0 and one of the others.
C1 event P1(λ1) and P2(λ2) touch each other at a vertex of P1(λ1) and a vertex of P2(λ2);

that is, a vertex-vertex contact occurs between P1 and P2.
C2 event P1(λ1) and P2(λ2) touch each other; that is, the three polygons are pairwise touching

and it holds that |C(τ)| = 3. See Figure 2(a).
H0 event Pi(λi), for i = 1 or 2, is tangent to the supporting line of an edge of P0 from the side

containing P0, or vice versa.
H1 event P1(λ1) is tangent to the supporting line of an edge of P2(λ2) from the side containing

P2(λ2), or vice versa. See Figure 2(b).
H2 event The three polygons P0, P1(λ1), and P2(λ2) have a common tangent line ` and the

three lie in the same side of `. See Figure 2(c).

Remark that K0 includes configurations whose corresponding translates of P1 and P2 may overlap
each other; the set of C2 events indeed form the borderline between configurations causing
overlap and those not causing overlap. Note, however, that all the changes of C(τ) and H(τ)
can be captured by a series of the events, when τ continuously moves inside K0 while it avoids
overlap between P1 and P2. In particular, although some portions of H1 events indeed imply an
overlap between P1 and P2, it suffices to track all the changes of H(τ) by H0, H1, and H2 events
if τ continuously moves without any overlap. On the other hand, events of type C1 and C2 by
definition imply no overlap between P1 and P2. Also, any C1 event is a C2 event by definition.

(a) (b)

`

P0

P1(λ1)

P2(λ2)

`

P0

P2(λ2)

P1(λ1)

Figure 3: Illustration of decomposing the set of H1 events. There are two different types of
translations for P1 around P0 for a directed line ` tangent to P1; (a) P1 is ahead of P0, or (b)
P0 is ahead of P1 along `. The analogue also holds for P2.

The set of all events forms a set of curves in the configuration space K0 = [0, L1) × [0, L2),
and thus decomposes the space into cells. To see this more precisely, we partition the set of
events into subsets as follows:

Curves of C0 events Any C0 event corresponds to a vertex-vertex contact, involving a pair
(v, v′) of vertices, exactly one of which belongs to P0. We denote by γC0

vv′ = γC0
v′v the set of

all C0 events with the involved pair (v, v′).
Curves of C2 events For any C2 event τ = (λ1, λ2), P1(λ1) and P2(λ2) touch each other. We

have two cases: either P1(λ1) is ahead of P2(λ2) (in the sense that P2(λ2 + ε) overlaps
P1(λ1) for arbitrarily small ε > 0) as depicted in Figure 2(a), or P2(λ2) is ahead of P1(λ1).
We denote the set of C2 events corresponding to the former by γC2

1 and the set of C2
events corresponding to the latter by γC2

2 . Note that every C1 event coincides with a C2
event by definition, and thus all the C1 events are included in γC2

1 ∪ γC2
2 .

Curves of H0 events Any H0 event τ corresponds to a collinearity of an edge e and a vertex
v, one of which belongs to P0. Let ` be the supporting line of e and assume that ` is
directed so that the two polygons that each of v and e belongs to lie on its left side. There
are two cases: the vertex v is ahead of e or behind e, along the directed line `. We denote
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the set of all H0 events corresponding to the former by γH0
ve and the set of all H0 events

corresponding to the latter by γH0
ev .

Curves of H1 events Any H1 event τ = (λ1, λ2) corresponds to a collinearity of an edge e
and a vertex v, each of which belongs mutually to P1 or P2. Let ` be the supporting line
of e and assume that ` is directed so that both P1(λ1) and P2(λ2) lie on its left side. Note
that ` translates as e (and the polygon containing e) translates. Observe that there are
two different types of translations for P1 around P0 such that ` keeps being tangent to
the translate of P1; P1 is ahead of P0 along the directed line ` (Figure 3(a)) or vice versa
(Figure 3(b)). The analogue also holds for P2. Thus, τ = (λ1, λ2) falls into one of the
four cases. We denote by γH1

ve,11 the set of H1 events (λ1, λ2) defined by (v, e) such that
P1(λ1) is ahead of P0 and P2(λ2) is also ahead of P0. Similarly, define the other three
γH1
ve,12, γH1

ve,21, and γH1
ve,22. Figure 2(b) shows a H1 event in the set γH1

ve,12.
Curves of H2 events Any H2 event τ = (λ1, λ2) is associated with a line ` commonly tangent

to the three polygons P0, P1(λ1), and P2(λ2). We assume that ` is always directed so that
P0, together with the other two, lies on its left side. We have again four cases as we have
for H1 event curves; either P1(λ1) (or P2(λ2)) is ahead of P0 along ` or is behind P0. We
divide the set of H2 events into four subsets as we did for H1 events and denote them by
γH2
11 , γH2

12 , γH2
21 , and γH2

22 , respectively. Figure 2(c) shows a H2 event in the set γH2
12 .

We let Γ be the family of those nonempty subsets of events defined above. We show in the
following that every γ ∈ Γ forms a monotone curve (or a set of monotone curves) in K0 with
several nice behaviors.
Lemma 3 Any set γ ∈ Γ is monotone in both the λ1-axis and the λ2-axis, and consists of
at most three curves on the configuration space K0. In addition, γ has following properties
according to its type. The asterisks below mean “any.”

• γ = γC0
∗ or γH0

∗ : γ is a line parallel to the λ1-axis or the λ2-axis.
• γ = γC2

∗ : γ is non-decreasing and piecewise linear, each of whose breakpoints coincides
with a C0 or C1 event.

• γ = γH1
∗ : γ is monotone and piecewise linear, each of whose breakpoints coincides with a

C0 event.
• γ = γH2

∗ : γ is non-decreasing and piecewise hyperbolic, each of whose breakpoints coincides
with a C0 or H0 event.

Proof. We consider each type separately.

• (C0 events) When γ = γC0
vv′.

Without loss of generality, assume that v belongs to P0 and v′ belongs to P1. By definition,
such a C0 event implies a contact between v and v′. This fixes the position of P1, and
thus the value of λ1. On the other hand, P2 is free to slide around P0. We thus have
γ = {(c, λ2) | λ2 ∈ [0, L2)} for some constant c ∈ [0, L1). Therefore, γ is parallel to the
λ2-axis. Analogously, if v′ belongs to P2, then γ is parallel to the λ1-axis.

• (H0 events) When γ = γH0
ve or γH0

ev .
This case is similar to C0 events; all the events in γ has a fixed λ1- or λ2-coordinate if
P1 or P2 is involved in the event, respectively. Thus, γ is parallel to the λ1-axis or to the
λ2-axis.

• (C2 events) When γ = γC2
1 or γC2

2 .
Assume that γ = γC2

1 . The other case can be shown analogously. Recall that γ consists of
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P0

P1(λ1)

P2(f(λ1))

Figure 4: Illustration to the proof of Lemma 3 for C2 events.

all configurations (λ1, λ2) ∈ K0 such that the three polygons P0, P1(λ1), and P2(λ2) are
pairwise touching, and P2(λ2) is ahead of P1(λ1). Let us fix λ1 to be a value in [0, L1).
Then, we have two cases: (1) there exists a unique λ2 ∈ [0, L2) such that the three polygons
P0, P1(λ1), and P2(λ2) are pairwise touching and P2(λ2) is ahead of P1(λ1), or (2) there
are more than one such values of λ2. The latter case in fact can happen when both P0 and
P1(λ1) touches a common edge of P2(λ2), so P2 is able to slide while keeping in contact
to both. This implies that γ is monotone because we can switch the role of λ1 and λ2 by
symmetry, while γ may contain a vertical line segment in K0.

We now walk along γ by increasing λ1 from 0 to L1, and observe the behavior of the three
polygons corresponding to the current point (λ1, λ2) on γ. Since P2(λ2) should touch
P1(λ1) and be ahead of P1(λ1), it also has to slide around P0 in the counter-clockwise
direction, as λ1 increases. This implies that γ is continuous as λ1 increases, except at the
limits of K0 (that is, when λ1 = 0 or L1, or λ2 = 0 or L2), and γ has a non-negative
slope at every point, so non-decreasing. In addition, one can easily see that the motion of
P1(λ1) and P2(λ2) is linear while the contact C(τ) remains the same.

(a) (b)

P0

`(0)

`(d)

`(D1)

P1(g2(d))P1(g1(d))

v0

`(d)

P2(h2(d))P1(g1(d))

P0

Figure 5: Illustration to the proof of Lemma 3 for H1 events.

• (H1 events) When γ = γH1
ve,ij for some 1 6 i, j 6 2.

We consider all the four subsets for fixed v and e, simultaneously. Without loss of gener-
ality, assume that e is horizontal and the polygon that e belongs to lies below e in R2. We
also assume that the bottommost vertex v0 of P0 lies on the line y = 0. Define `(d) for
d > 0 to be the line {y = d}, directed to the left.

Let t0 be the value such that the topmost vertex of P1(t0) touches v0 of P0. Let t1 be
the value such that P1(t1) is the highest translate of P1 that touches P0, and let D1 be
such that `(D1) passes through the topmost vertex of P1(t1). Observe then that for any
0 < d < D1, there are two translates of P1 each of which touches P0 and `(d), and P1
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lies to the left of `(d). See Figure 5(a). We denote these two translates by P1(g1(d)) and
P1(g2(d)); we have g1(0) = g2(0) = t0 and g1(D1) = g2(D1) = t1, and P1(g1(d)) is to the
left of P1(g2(d)) for any 0 < d < D1 in R2. Analogously, we define D2 for P2, and also
define h1(d) and h2(d) for P2 that are analogous to g1(d) and g2(d), respectively. Then,
observe that (gi(d), hj(d)) ∈ γH1

ve,ij for any 0 6 d 6 min{D1, D2}.
By adjusting the coordinate system of K0, we assume that g1(0) = g2(0) = 0 and h1(0) =
h2(0) = 0. Then, both g1 and h1 are decreasing from L1 and L2, respectively, while both
g2 and h2 are increasing from 0 because P1(g1(d)) and P2(h1(d)) slide around P0 in the
clockwise direction while P1(g2(d)) and P2(h2(d)) slide in the counter-clockwise direction
as d increases. This also implies the continuity of gi and hj for any 1 6 i, j 6 2. Putting
it all together, we conclude that γH1

ve,ij is the graph of a partial function of λ1 that is either
increasing or decreasing; it is increasing if i = j, or decreasing otherwise. For example,
Figure 5(b) illustrates the case of (i, j) = (1, 2), where one observes that γH1

ve,12 is the
graph of a decreasing function. Hence, in the general case where g1(0) = g2(0) 6= 0 and
h1(0) = h2(0) 6= 0, each γH1

ve,ij consists of at most three monotone curves whose endpoints
lie at the limit of K0.

Finally, we show that f is piecewise linear with breakpoints at C0 events. For the purpose,
consider the grid G on K0 generated by all C0 event curves and pick any grid cell σ
intersected by γ. By definition, any configuration τ ∈ σ ∪ γ has a fixed contact set C(τ).
Then, it is not difficult to see that the function f is linear. (See Figure 5(b).) Therefore,
each γH1

ve,ij is the graph of a monotone and piecewise linear function whose breakpoints
coincide with C0 events. Note that all the endpoints of the curves γH1

ve,ij for any 1 6 i, j 6 2
also coincide with C0 events.

(a)

`(θ)

P2(h2(θ))

P1(g1(θ))

P0

v0

v1

v2

(b)

v0

v1

v2

Figure 6: Illustration to the proof of Lemma 3 for H2 events.

• (H2 events) When γ = γH2
ij for some 1 6 i, j 6 2.

For any H2 event (λ1, λ2), there is a directed line that is commonly tangent to the three
polygons, as discussed above. For any θ ∈ [0, 2π), consider the directed line `(θ) oriented
in θ and tangent to P0 such that P0 lies on the left side of `(θ). Then, there are exactly
two different values of λ1 ∈ [0, L1) such that P1(λ1) is tangent to `(θ) from the left of `(θ);
either P1(λ1) is ahead of P0 along `(θ) or not. We let g1(θ) and g2(θ) be the values of λ1
for the former and the latter cases, respectively. Analogously, we define h1(θ) and h2(θ)
for P2(λ2). We then observe that (gi(θ), hj(θ)) ∈ K0 is an H2 event for any θ ∈ [0, 2π) and
any 1 6 i, j 6 2. Moreover, we have (gi(θ), hj(θ)) ∈ γH2

ij .

Observe that gi and hj increase continuously as θ increases from 0, unless gi(θ) = 0 or
gi(θ) = L1, or hj(θ) = 0 or hj(θ) = L2. The inverse functions of gi and hj are also well
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defined: there is a unique θ ∈ [0, 2π) such that gi(θ) = λ1 for any fixed λ1 ∈ [0, L1).
This implies that each set γH2

ij is monotone in both axes, and is the graph of an increasing
function fij from [0, L1) to [0, L2). Figure 6(a) illustrates the case of (i, j) = (1, 2).

In order to see that fij is piecewise hyperbolic, consider the grid G on K0 generated by
all C0 and H0 curves. Recall that any event curve of type C0 or H0 is an axis-parallel
line in K0. In any cell σ of G that is intersected by γ, we have a constant contact set C
and bridges. Since γ is monotone, γ ∩ σ is connected and thus it gives us an open interval
I = (θ1, θ2) such that γ ∩ σ = {(gi(θ), hj(θ)) | θ1 < θ < θ2}. For any θ ∈ I, observe that
`(θ) always passes through three fixed vertices v0, v1 and v2 such that va belongs to Pa for
a = 0, 1, 2. (See Figure 6(a) for an illustration.) Also, `(θ) rotates at v0 as θ ∈ I increases.
Each of v1 and v2 translates in a fixed direction as θ increases in the interval I. Observe
that the direction of v1 and v2 is determined by the contacts C. This constrains the motion
of P1 and P2 to be all linear along γ inside σ. A careful analysis using basic trigonometry1

concludes that fij is hyperbolic in σ, that is, of the form fij(λ1) = 1/(c1 + c2λ1) + c3 for
some constants c1, c2, c3, and fij is increasing unless γ reaches the boundary of K0 in σ.
This shows the final case of the lemma.

This completes the proof.

Each γ ∈ Γ thus consists of one, two, or three curves unless it is axis-parallel. As shown in
the proof of Lemma 3, the endpoints of γ occur when λ1 ∈ {0, L1} or λ2 ∈ {0, L2}, except
the endpoints of H1 event curves that lie on a C2 event curve. This discontinuity is because
the configuration space K0 is indeed periodic; if we extend P1(λ1) and P2(λ2) for λ1 > L1 and
λ2 > L2, then we have P1(λ1+L1) = P1(λ1) and P2(λ2+L2) = P2(λ2), and therefore γ becomes
connected. We thus call each γ ∈ Γ an event curve of type C0, C2, H0, H1, or H2 according to
its type.

3.3 Complexity of event curves

We now discuss the complexity of event curves and of their arrangement A(Γ).
Lemma 4 The family Γ consists of O(n) event curves and the number of C1 events is bounded
by O(n). Also, each event curve in Γ consists of either O(n) line segments or O(n) hyperbolic
segments.
Proof. We take event curves of each type into account. Note that there are exactly two C2
event curves and four H2 event curves as defined above. Let n0, n1, and n2 be the number of
vertices of P0, P1, and P2, respectively.

A C0 event curve γC0
vv′ is associated with a pair of vertices (v, v′), where v is a vertex of P0

v′ is a vertex of P1 or P2. The number such pairs (v, v′) with γC0
vv′ ∈ Γ is exactly n0 + n1 if v′ is

1Let λ2 = fij(λ1). In Figure 6, let d1 and d2 be the Euclidean distance from v0 to the lines supporting the
motion of v1 and v2 locally. Then, the pair (λ1, λ2) can be parameterized as (d1 tan(θ+α1)+l1, d2 tan(θ+α2)+l2),
where c1, c2, l1, l2 are constants and θ represents the orientation of the line `(θ). Eliminating the parameter θ
yields

λ2 = d2 tan

(
tan−1

(
λ1 − l1
d1

)
+ α2 − α1

)
+ l2.

This equation is simplified as follows by applying the “addition formula for tangent”: tan(u + v) = (tanu +
tan v)/(1− tanu tan v).(

λ1 − l1 −
d1

tan(α2 − α1)

)(
λ2 − l2 +

d2
tan(α2 − α1)

)
= d1d2 ·

tan2(α2 − α1) + 1

tan2(α2 − α1)
.

This represents an equation of a hyperbolic curve of the form λ2 = fij(λ1) = 1/(c1 + c2λ1) + c3 .
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a vertex of P1, and n0 + n2 if v′ is a vertex of P2 [9]. Thus, there are exactly 2n0 + n1 + n2 C0
event curves in Γ.

For any edge e of P0, there are exactly two translates of P1 such that P1 is tangent to the
supporting line of e, and thus a vertex of P1 lies on the line. Equivalently, for any edge e′ of
P1, there are exactly two translates of P1 such that P0 is tangent to the supporting line of e′.
This implies that the number of H0 event curves defined by P0 and P1 is exactly 2n0 + 2n1.
Analogously, the number of H0 event curves defined by P0 and P2 is exactly 2n0 + 2n2. On the
other hand, the number of H1 event curves is exactly 8n1 + 8n2 since we have four event curves
for each such pair of a vertex and an edge. Hence, the number of H0 and H1 event curves is
exactly 4n0 + 10n1 + 10n2.

For the number of C1 events, recall that each C1 event lies on a C2 event curve. Walking
along a C2 event curve γ, we have a continuous motion of P1 and P2 where the three polygons
are pairwise touching, and P1 and P2 slide around P0 in the counter-clockwise direction. During
this walk, observe that P1 indeed slides around P2. Hence, the number of C1 events along a C2
event curve is exactly n1 + n2. Since we have two C2 event curves, the number of C1 events in
total is 2n1 + 2n2.

To show the second statement, we bound the number of breakpoints on each event curve
of type H1, H2, and C2. Recall that any C0 or H0 event curve is axis-parallel by Lemma 3.
Consider an H1 event curve γ ∈ Γ. Let m be the number of C0 events on γ; that is, the number
of C0 event curves intersected by γ. Lemma 3 implies that γ consists of m line segments. Again
by Lemma 3, γ is monotone and therefore m = O(n) since there are O(n) C0 event curves that
are axis-parallel. Similarly, any C2 event curve consists of O(n) line segments and any H2 event
curve consists of O(n) hyperbolic segments.

We now consider the arrangement A(Γ) of the event curves in Γ.
Lemma 5 The complexity of the arrangement A(Γ) is O(n3), and each of its edges is either a
line segment or a hyperbolic arc. More specifically, the number of crossings between any two
event curves in Γ is O(n).
Proof. We first show that the number of crossings between any two event curves in Γ is bounded
by O(n), which implies that the combinatorial complexity of the arrangement A(Γ) is bounded
by O(n3) since Γ consists of O(n) event curves by Lemma 4. By Lemma 3, any C0 or H0 event
curve is axis-parallel and any γ ∈ Γ is monotone in both axes. Thus, any C0 or H0 event curve
intersects any other event curve at most once.

Consider two event curves γ1, γ2 ∈ Γ of type C2, H1, or H2. By Lemmas 3 and 4, each γi
is monotone and has O(n) breakpoints. And γi is either linear or hyperbolic on any interval of
[0, L1) between two consecutive breakpoints of γi This implies that there are at most two values
of λ1 in each of the intervals such that f1(λ1) = f2(λ1). Therefore, there are at most O(n)
crossings between γ1 and γ2. Since there are only O(n) event curves of type C2, H1, or H2,
there are at most O(n2) such combinations of (γ1, γ2). We thus have at most O(n3) crossings in
this case.

Note that the complexity of A(Γ) can be Ω(n3) by a concrete construction of input polygons, so
the bound of Lemma 5 is shown to be tight. Nonetheless, we prove a better bound if we focus
on the feasible configurations, which imply no overlap between P1 and P2. We can easily see
that the O(n3) complexity of A(Γ) is completely due to crossings among H1 event curves. By
Lemma 3, any C0 or H0 curve crosses any other curve at most once. Since there are only six
curves of type C2 and H2, the number of combinations (γ1, γ2) of any two curves of type C2,
H1, or H2 but not both of H1 is O(n), which implies that the total number of crossings between
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such combinations of curves is at most O(n2) by Lemma 5. Fortunately, the number of H1–H1
crossings that are feasible is shown to be much smaller.

Recall that the two C2 curves divide K0 into two regions, one consisting of all feasible
configurations and the other of all infeasible configurations in K0. We denote by F ⊂ K0 the
former region. Since we want to find an optimal feasible configuration, we are mostly interested
in the feasible region F and how it is decomposed.
Lemma 6 Any two H1 event curves cross at most twice in F . Therefore, the arrangement A(Γ)
consists of O(n2) vertices and edges in F .
Proof. Consider two distinct H1 curves γ1, γ2 ∈ Γ. If one of the two is non-increasing and the
other non-decreasing, then they cross at most once and we are done.

Without loss of generality, assume that both γ1 and γ2 are non-decreasing such that γ1 is
defined by a collinearity of a vertex v of P1 and an edge e of P2 and γ2 is by a vertex v′ and
an edge e′ whichever of P1 and P2 they belong to. Suppose that γ1 crosses γ2 at (λ1, λ2) in F .
Let ` be the line supporting e of P2(λ2) and `′ be the line supporting e′ at this configuration.
Then, we have v ∈ ` and v′ ∈ `′. Also, let d be the distance between v and the closer endpoint
of e along `. We then observe that for any crossing in γ1 ∩ γ2 the distance between v and the
closer endpoint of e must be exactly d. This can be seen by simple geometry: Imagine that P1

moves along ` towards e of P2 from infinity, and see the distance between the line supporting e′

and the vertex v′. There is at most one instance where e′ and v′ are aligned, and the distance
between v and the closer endpoint of e is exactly d at the moment.

Now, consider the location of P1 and P2 as above. Since (λ1, λ2) ∈ F , they do not overlap
each other. We then have at most two possible position of P0 that touches both P1 and P2. This
means that there are at most two such coordinates (λ1, λ2), and thus two H1 curves can cross
at most twice in F . Since there are O(n) H1 curves in Γ, this suffices to show that the number
of crossings in F among all H1 curves is O(n2).

Figure 7 shows the arrangement A(Γ) of the event curves for the three input polygons depicted
in Figure 1. Although we insist to decompose K0 into cells in each of which the contacts C(τ)
and the bridges H(τ) stay constant, remark that some cells of A(Γ) are in fact not the case.
For our purpose, however, it suffices to well decompose the feasible region F , which imply no
overlap between P1 and P2.
Lemma 7 The arrangement A(Γ) of the event curves decomposes the feasible region F ⊂ K0

into cells σ such that both C(τ) and H(τ) remain constant over all τ ∈ σ.
Recall that all configurations in K0 assume P0 to keep contact with both P1 and P2. Alter-

nating the role of P0 by P1 or P2, we achieve a complete description of the configuration space
K. Letting K1 and K2 be the analogous configuration space for P1 and P2, respectively, we have
K = K0 ∪ K1 ∪ K2.

4 Algorithms

In this section, we present an algorithm that computes an optimal feasible configuration that
minimizes the area or the perimeter of the convex hull of the three convex polygons under
translation. The arrangement A(Γ) of the event curves is indeed sufficient to deal with the area
or perimeter function in each feasible cell. Note that for any feasible configuration τ ∈ F , we
have 2 6 |H(τ)| 6 4.
Lemma 8 Let σ be any cell of A(Γ) with σ ⊂ F . The area function is hyperbolic paraboloidal
on σ if |H(τ)| = 3 for τ ∈ σ, or linear otherwise; the perimeter function is unimodal on σ and
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(0, 0) (L1, 0)

(0, L2)

Figure 7: The arrangement A(Γ) of the event curves in the configuration space K0: The place-
ments of P1(0) and P2(0) correspond to the left and right figures of Figure 1, respectively. Event
curves of type C0 (blue), H0 (orange), H1 (black), C2 (red), and H2 (purple). Any configuration
in the gray region is infeasible, so the feasible region F is the complement of the gray region.
For any configuration τ in the purple region enclosed by H2 event curves, we have |H(τ)| = 4.

on any edge incident to σ, and is of O(1) descriptive complexity.
Proof. We analyze the area or perimeter function restricted in σ. By Lemma 7, the contacts
C = C(τ) and the bridges H = H(τ) stay constant over τ ∈ σ.

Each bridge in H is an edge of conv(τ) between two vertices of the translated polygons. Let
(v1, v2), . . . , (v2|H|−1, v2|H|) denote the bridges in H, and xi and yi be the x- and y-coordinates of
vi in R2 under the translation by any (λ1, λ2) ∈ σ. Since the translations of P1(λ1) and P2(λ2)
are linear inside σ, we can view both of xi and yi as functions linear on either λ1 or λ2.

We first consider the area function restricted in σ. Let fσ be the function mapping τ ∈ σ
to the area ‖conv(τ)‖ of the convex hull of the translates by τ . Note that 2 6 |H| 6 4 since
σ ⊂ F . We handle each of the three cases according the cardinality of H.

Case of |H| = 2. In this case, conv(τ) contains one of the three translates in its interior by any
τ ∈ σ. This implies that only two of them appear on the boundary of conv(τ) and they
are connected by two bridges (v1, v2) and (v3, v4). We assume that v1 and v4 belong to one
polygon and v2 and v3 to the other, as shown in Figure 8(a). Observe then that x4 − x1
and y4 − y1 are constant for any (λ1, λ2) ∈ σ since v1 and v4 belong to the same polygon.
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Figure 8: Illustration to the proof of Lemma 8 according to the number of bridges on a cell
σ: (a) |H| = 2, (b) |H| = 3, (c) |H| = 4. The thick segments depict the bridges on the
boundary of the corresponding convex hull and the gray regions are invariable components over
all τ = (λ1, λ2) ∈ σ.

Analogously, both x3−x2 and y3−y2 are constant. We let a1, b1, a2, b2 be those constants
such that a1 = x4 − x1, b1 = y4 − y1, a2 = x3 − x2, and b2 = y3 − y2.
The convex hull conv(τ) for τ ∈ σ consists of two invariable components and a quadrilateral
Q(τ) formed by v1, v2, v3, v4. Thus, fσ(τ) is described as the area of the quadrilateral Q(τ)
plus a constant. We now focus on the area of the quadrilateral Q(τ). Since Q(τ) is the
union of two triangles 4v1v2v3 and 4v1v3v4, its area ‖Q(τ)‖ is explicitly formulated as
follows:

‖Q(τ)‖ =
1

2

∣∣∣∣ x2 − x1 y2 − y1
x3 − x1 y3 − y1

∣∣∣∣+
1

2

∣∣∣∣ x3 − x1 y3 − y1
x4 − x1 y4 − y1

∣∣∣∣
=

1

2

∣∣∣∣ x2 − x1 y2 − y1
x2 − x1 + a2 y2 − y1 + b2

∣∣∣∣+
1

2

∣∣∣∣ x2 − x1 + a2 y2 − y1 + b2
a1 b1

∣∣∣∣
=

1

2
|b2(x2 − x1)− a2(y2 − y1)|+

1

2
|b1(x2 − x1 − a2)− a1(y2 − y1 − b2)|,

where |·| denotes the determinant of a square matrix or the absolute value of a real number
by abuse of its usage. Thus, the area function fσ is shown to be linear to τ = (λ1, λ2) ∈ σ
since all xi and yi are linear in either λ1 or λ2.

Case of |H| = 3. In this case, the convex hull conv(τ) for any τ ∈ σ consists of three invariable
components and the hexagon formed by the six vertices involved in H. Let v1, . . . , v6 be
the vertices involved in H indexed in the counter-clockwise order along the boundary of
conv(τ) in such a way that v4 and v5 belong to P0 as shown in Figure 8(b). Thus, fσ is
represented by the area of the hexagon plus a constant. The hexagon is further divided
into four triangles 4v2v3v4, 4v1v5v6, 4v2v4v5, and 4v1v2v5. Observe that the area of all
triangles but 4v1v2v5 is linear in σ since v2 and v3 belong to a common polygon, v1 and
v6 belong to another common polygon, and v4 and v5 are stationary. The area of 4v1v2v5
is represented as follows:

‖4v1v2v5‖ =
1

2

∣∣∣∣ x1 − x5 y1 − y5
x2 − x5 y2 − y5

∣∣∣∣ .
Note that x5 and y5 are constant since v5 is stationary. Plugging this into fσ, hence,
we obtain that fσ(λ1, λ2) is of the form c1λ1λ2 + c2λ1 + c3λ2 + c4 for some constants
c1, . . . , c4, which is reformulated into c′1(λ1 + c′2)(λ2 + c′3) + c′4. This equation indeed
describes a transformed copy of a hyperbolic paraboloid.
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Case of |H| = 4. Let v1, . . . , v8 be the vertices involved in H indexed in the counter-clockwise
order along the boundary of conv(τ) in such a way that v2, v3, v6, and v7 belong to
P0, as shown in Figure 8(c). Note that P0 must have four vertices in H in this case.
Then, the convex hull conv(τ) for τ ∈ σ consists of three invariable components and two
quadrilaterals Q1(τ) and Q2(τ), formed by v1, v2, v7, v8 and by v3, v4, v5, v6, respectively.
Thus, the function fσ can be represented by ‖Q1(τ)‖+ ‖Q2(τ)‖ plus a constant. Without
loss of generality, we assume that v1 and v8 belong to P1 while v4 and v5 belong to P2.
We then observe that ‖Qi(τ)‖ is dependent only on λi for i = 1, 2 and, moreover, is linear
in λi. Hence, we conclude that fσ is linear on σ in this case.

Summarizing the above argument, we obtain the lemma about the area function.
We now turn to the perimeter function. Considering each case of |H| as done above for

the area function, the perimeter |conv(τ)| of the convex hull conv(τ) for τ = (λ1, λ2) ∈ σ is
described as follows:

|conv(τ)| = c+

|H|∑
j=1

√
(x2j − x2j−1)2 + (y2j − y2j−1)2,

where c denotes a constant in R and xi and yi are the x- and y-coordinates of vi as defined
above. Since |H| 6 4 and both xi and yi are linear in either λ1 or λ2, this simply shows that the
perimeter function is of O(1) complexity. In addition, the convexity, and thus the unimodality of
the perimeter function directly follows from Lemma 1: Any cell σ of the arrangement A(Γ) with
σ ⊂ F corresponds to a set of translation vectors τ ∈ R4 that lie in a common 2-dimensional
affine subspace of R4 since the configurations τ = (λ1, λ2) ∈ σ translate each of P1 and P2 along
a line in R2. By the same argument, restricted on any edge e of A(Γ) with e ⊂ F , the convexity
of the perimeter function can be shown if e appears to be a line segment, since a line segment
lying in the closure of a cell of A(Γ) corresponds to a line segment in R4.

What is left is the case where e is a hyperbolic arc. In this case, e is of type H2 and is
described by an equation of the form λ2 = h(λ1) = 1/(c1 + c2λ1) + c3 for some constants c1, c2,
and c3 by Lemma 3 and its proof. As discussed above, the x and y-coordinates xi and yi of vi are
described as linear functions in λ1 and λ2. So, substituting λ2 by h(λ1) in the above equation
for |conv(τ)| yields a function g(λ1) that maps λ1 to the perimeter of the corresponding convex
hull of the three polygons along the edge e. A careful analysis of the function g shows that its
derivative has at most one real zero. We thus conclude that g has at most one local minimum
except two limits of λ1 corresponding to the endpoints of e. This implies the unimodality of the
perimeter function along the hyperbolic edge e.

Our algorithm consists of two phases. First, it computes the arrangement A(Γ) in the feasible
region F only, and second it traverses each cell of the arrangement and computes an optimal
translation for the area or the perimeter function restricted to the cell.

By Lemma 8, the second phase is relatively easy once the cells and the edges of A(Γ) lying
in F are fully specified. At this phase, we visit every cell in F by crossing over an incident edge
and thus moving to a neighboring cell. Then, by coherence, the description of the objective
function restricted in the next cell can be obtained in constant time. Lemma 8 guarantees that
the area or the perimeter function can be minimized in O(1) time in a cell or on each of its
bounding edges. Hence, the total time complexity of the second phase is bounded by O(n2)
time by Lemma 6.

The arrangement can be easily computed in O(n2 log n) time by a typical plane-sweep algo-
rithm. In the following, we focus on improving the time bound to O(n2) for the task.
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4.1 Computing the arrangement A(Γ) in F

In order to compute the arrangement A(Γ), we first compute all the event curves in Γ with full
description, and then identify all the intersections among them that lie in F .

Preprocessing. As a preprocessing, we take any two polygons Pi and Pj for 0 6 i < j 6 2
and move Pj around Pi keeping a contact to Pi in the counterclockwise direction. During this
motion, we gather all occurrences of vertex-vertex contact in order and store them into a sorted
list Cij with the corresponding pairs of vertices. In addition, we maintain two external common
tangents of Pi and Pj and gather all occurrences at which one of the two tangents supports an
edge of Pi or Pj . We also store them into a sorted list Hij with the corresponding pairs of vertex
and edge. Let us make each of Cij and Hij to be a circular list for later use. This preprocessing
can be handled in O(n) time as done in [9]. Observe that each member of C01 and C02 describes
a C0 event curve in K0, and each of H01 and H02 describes an H0 event curve. We thus find all
C0 and H0 event curves by traversing these lists.

Computing the event curves. Let G be the grid on K0 induced by all the C0 and H0
event curves. The other event curves can be obtained by tracing each across the grid cells of
G. Consider the four H2 event curves. By Lemma 3, each H2 event curve γ appears to be a
hyperbolic segment in each grid cell σ intersected by itself, and the equation of each segment in
σ can be described with help of the lists Cij and Hij . We first locate its starting point at λ1 = 0
in O(n) time from the lists Cij and Hij , and then we trace γ cell by cell. As we walk along γ
and move to the neighboring grid cell σ′, we immediately tell the change of the contacts or the
bridges from the lists Cij and Hij so that the equation of γ in σ′ can be updated in O(1) time.
Hence, tracing γ spends time proportional to the number of grid cells of G that are intersected
by γ. Lemma 4 tells us that the number of such grid cells, and thus the cost of tracing an H2
curve is O(n).

The other event curves of different types can be traced in the same fashion, taking O(n) time
for each. While tracing a C2 event curve, we can also specify all C1 events: this can be done
by looking up the list C12 with a pointer that indicates the current contact between P1 and P2.
Tracing an H1 event curve needs to look up the list H12; in fact, only the members of H12 can
determine an H1 event curve. We hence can compute all the event curves in Γ with their full
description in O(n2) time.

Specifying all necessary crossings. We then compute the arrangement A(Γ) in F by spec-
ifying all necessary crossings among the event curves in Γ.

Note that for any two event curves γ1, γ2 ∈ Γ, all the crossings between them can be computed
in O(n) time by Lemmas 3 and 5. For all pairs (γ1, γ2) of event curves such that γ1 is of type
C2 or H2 and γ2 is of type C2, H1, or H2, we are thus able to specify all the crossings between
γ1 and γ2 in O(n2) time, since the number of such pairs (γ1, γ2) is O(n). What remains is to
specify the crossings among the H1 event curves.

For the last task, we take only feasible portions of every event curve into account. Let
ΓF := {γ ∩F | γ ∈ Γ}. Computing ΓF can be done by cutting each γ ∈ Γ by the C2 curves and
discarding its infeasible portions. Each feasible portion γ′ of an event curve γ inherits its type
from γ. Fortunately, this cutting does not increase the number of curves much, especially, H1
event curves.
Lemma 9 The number of H1 event curves in ΓF is O(n).
Proof. We show that any H1 event curve in Γ crosses a C2 event curve at most twice, which
directly implies the lemma.

15



P1

e′

v′

δv′e′

P2

e
v

Figure 9: Illustration to the list ∆.

Let γ ∈ Γ be an H1 event curve defined by (v, e). For any configuration (λ1, λ2) ∈ γ, P1(λ1)
and P2(λ2) have a common external tangent that supports e. If it is also a C2 event, in addi-
tion P1(λ1) and P2(λ2) must touch each other. In such a scene, P0 must touch both P1(λ1) and
P2(λ2); there are at most two such possibilities, implying at most two coordinates (λ1, λ2) ∈ γ.

Lemma 6 implies that the number of crossings in F between a fixed H1 curve γ and all the
other H1 curves is O(n). In the following, we show that all such crossings can be specified in
O(n) time. By Lemma 9, it suffices to conclude the total O(n2) time.

For the purpose, we need some more observations. Let γ ∈ ΓF be an H1 event curve defined
by a pair (v, e) ∈ H12 of vertex v and edge e of P1 and P2. For any configuration (λ1, λ2) ∈ γ,
P1(λ1) and P2(λ2) have a common external tangent that supports e. Let g be a function partially
defined on [0, L1) whose graph is γ (see the proof of Lemma 3.) Define dγ(λ1) to be the distance
between v and the endpoint of e that are the closer to v in the corresponding translates P1(λ1)
and P2(g(λ1)). Observe that dγ is linear in a grid cell σ of G since the translations of P1 and
P2 are linear in σ along γ.

On the other hand, we consider the other external common tangent `(λ1) of P1(λ1) and
P2(g(λ1)). When an edge e′ of P1 or P2 lies on `(λ1), we have a crossing between γ and another
H1 event curve γ′ defined by (v′, e′) for the vertex v′ lying on `(λ1); we let δv′e′ := dγ(λ1) at
such a value of λ1. By a geometric observation, at such a crossing, P1(λ1) and P2(g(λ1)) have
two external common tangents, one supporting e and the other supporting e′; this fixes a unique
value of dγ(λ1) to be δv′e′ . This implies that for any λ1, γ′ crosses γ at (λ1, g(λ1)) if and only
if dγ(λ1) = δv′e′ . See Figure 9 for an illustration.

We thus perform the following procedure. We compute the value δv′e′ for all (v′, e′) ∈ H12

and store them into a sorted array ∆ with corresponding label (v′, e′). Then, we walk along γ
cell by cell to find all occurrences such that dγ(λ1) = δ for some δ ∈ ∆. This completely specifies
all crossings between γ and all other H1 event curves in ΓF . To compute ∆, initially make P1

and P2 touch each other, keeping a common tangent going through v and e, and consider the
other common tangent line `. If we move P2 in the direction parallel to e and away from P1,
then the tangent line ` will rotate monotonously in one direction. This implies that the order
of δv′e′ follows from the order of (v′, e′) in the list H12. Thus, we can compute ∆ in O(n) time.

Let δ1, . . . , δm be the members of ∆ in the order. Once we compute ∆, we walk along γ by
increasing λ1 to find all λ1 such that dγ(λ1) = δ holds for some δ ∈ ∆. Since dγ is linear in
each cell σ of G intersected by γ, the task is not difficult if we maintain a variable a such that
δa 6 dγ(λ1) < δa+1 for the current value of λ1. Hence, we can find all crossings on γ ∩ σ with
the other H1 event curves in time O(1 + c), where c is the number of the reported crossings in
σ. If we sum up this over all grid cells intersected by γ, we obtain O(n) time bound.

Putting it all together, we can specify all intersections among curves in ΓF in O(n2) time,
which are the vertices of A(ΓF ). We then cut each curve γ ∈ ΓF by the crossings on γ to obtain
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the edges of A(ΓF ). As a result, we can build the underlying graph of the arrangement A(ΓF ),
and then the arrangement A(ΓF ) can be built in the same time bound O(n2).

We finally conclude our main result.
Theorem 1 Given three convex polygons P0, P1, and P2 having a total of n vertices, one can
find in O(n2) time using O(n2) space an optimal pair (τ1, τ2) of translation vectors such that
the interiors of P0, τ1P1 and τ2P2 are disjoint, and the area ‖conv(P0 ∪ τ1P1 ∪ τ2P2)‖ or the
perimeter |conv(P0 ∪ τ1P1 ∪ τ2P2)| is minimized.

5 Conclusion

We study the bundling problem for three convex polygons in the plane and present an efficient
algorithm for the problem with quadratic running time and space. We believe that our approach
in this paper can naturally be extended to the cases of k > 3 convex polygons. It would be
interesting to investigate their combinatorial and algorithmic complexity for small k. One can
also consider the bundling problem in higher dimensions.

Another direction of future study would be to study the case of non-convex polygons. It is
well known that for two polygons, their Minkowski sum [5] (or Minkowski difference) provides
the translation space of one polygon over the other. It is, however, unclear how to extend the
idea for the case of more than two polygons.
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