
CCCG 2021, Halifax, Canada, August 10–12, 2021

Rearranging a Sequence of Points onto a Line∗

Taehoon Ahn† Jongmin Choi† Chaeyoon Chung† Hee-Kap Ahn‡ Sang Won Bae§

Sang Duk Yoon¶

Abstract

Given a sequence of n weighted points 〈p1, p2, . . . , pn〉
in the plane, we consider the problem of finding a re-
arrangement of the points, qi for each pi, onto a line
such that any two consecutive points qi and qi+1 are at
distance no more than their weight difference, and the
maximum distance between pi and qi over all i is mini-
mized. We present efficient algorithms that compute an
optimal rearrangement for three variants of the prob-
lem under the Euclidean metric. When the line is fully
specified or partially specified by only its orientation,
our algorithms take near-linear time. When we need to
find a target line, onto which the input sequence can
be rearranged with the optimal rearrangement cost, we
present an O(n3 polylog n)-time algorithm.

1 Introduction

Consider an object moving in the plane and its trajec-
tory data which can be represented by a sequence of
pairs, each consisting of a time stamp and the coordi-
nates of the object at the time. One popular problem
concerning such trajectories is to determine whether the
object follows a path of a certain shape. The quality of
the trajectory with respect to the path can be mea-
sured by their similarity, that is, how closely the trajec-

∗T.Ahn, J.Choi, C.Chung, and H.-K.Ahn were supported by
the Institute of Information & communications Technology Plan-
ning & Evaluation(IITP) grant funded by the Korea govern-
ment(MSIT) (No. 2017-0-00905, Software Star Lab (Optimal
Data Structure and Algorithmic Applications in Dynamic Geo-
metric Environment)) and (No. 2019-0-01906, Artificial Intelli-
gence Graduate School Program(POSTECH)). S.W.Bae was sup-
ported by Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of
Education (2018R1D1A1B07042755). S.D.Yoon was supported
by “Cooperative Research Program for Agriculture Science &
Technology Development (Project No. PJ015269032021)” Rural
Development Administration, Republic of Korea.
†Department of Computer Science and Engineering, Pohang

University of Science and Technology, Pohang, Korea. {sloth,
icothos, chaeyoon17}@postech.ac.kr
‡Department of Computer Science and Engineering, Graduate

School of Artificial Intelligence, Pohang University of Science and
Technology, Pohang, Korea. heekap@postech.ac.kr
§Department of Computer Science, Kyonggi University, Su-

won, Korea. swbae@kgu.ac.kr
¶Department of Service and Design Engineer-

ing, Sungshin Women’s University, Seoul, Korea.
sangduk.yoon@sungshin.ac.kr

tory follows the path in increasing order of time stamps.
Therefore, in a good trajectory, every trajectory point
can be translated to a point in the path such that the
translation distance is small and two consecutive trajec-
tory points are translated to points close to each other
along the path. Formally, we define this problem for
linear paths as follows.

Weighted point-to-line rearrangement. Given a se-
quence of n points 〈p1, p2, . . . , pn〉 in the plane and their
weights wi for pi with w1 ≤ w2 ≤ · · · ≤ wn, find a re-
arrangement of the points, qi for each pi, onto a line
such that any two consecutive points qi and qi+1 are at
distance no more than wi+1 − wi, and the maximum
distance between pi and qi over all i is minimized. We
call such a rearrangement an optimal rearrangement of
the point sequence, and the maximum distance of an
optimal rearrangement the optimal rearrangement cost.

Observe that the constraint on the distance of two
consecutive points implies that any two points qi and
qj (i ≤ j) are at distance no more than wj − wi. See
Figure 1 for an illustration of rearranging five points
onto a line `.

We consider three variants of the problem: (1) the
rearrangement line is given, (2) only the orientation of
the rearrangement line is given, or (3) the rearrange-
ment line is not specified at all. For the variants (2)
and (3), we need to find a best line, onto which the
input sequence can be rearranged with the optimal re-
arrangement cost, and realize such a rearrangement.

For ease of presentation, we will discuss a special case
in which wi = i for every index i. We first describe our
algorithms for this special case and then show how to
extend to the general weighted problem without increas-
ing time complexities. The special case is equivalent to
the following unweighted problem.

(Unweighted) point-to-line rearrangement. Given a
sequence of n points 〈p1, p2, . . . , pn〉 in the plane, find a
rearrangement of the points, qi for each pi, onto a line
such that any two consecutive points qi and qi+1 are at
distance no more than 1, and the maximum distance
between pi and qi over all i is minimized.

Again, the constraint on the distance between two
consecutive points implies that any two points qi and qj
(i ≤ j) are at distance no more than j − i.

33rd Canadian Conference on Computational Geometry, 2021

≤ w2 − w1p1

p2

p3

p4

p5

q1

q2
q3

q4
q5

`

Figure 1: A rearrangement 〈q1, ..., q5〉 of five points
〈p1, ..., p5〉 onto `. Any two points qi and qj (i ≤ j)
are at distance no more than wj − wi. The cost of this
rearrangement is the maximum distance between pi and
qi over all i = 1, . . . , 5.

Related work. There has been a fair amount of work
on rearranging points with respect to certain objectives.
One of those problems the most related to ours asks to
find the center line that minimizes the maximum dis-
tance from the input points to the line. This can be
solved in O(n log n) time by computing the center line
of a minimum-width slab for the points from the convex
hull [11, 12]. Notice that the center line problem implic-
itly assumes rearrangements of input points obtained by
their orthogonal projections onto a line, and hence the
center line problem is equivalent to our rearrangement
problem where the proximity constraint of consecutive
points is relaxed.

Similarly, a circle that aggregates a point set can
be found from the minimum-width annulus for the
points [9]. There is a deterministic O(n8/5+ε)-time algo-
rithm [2] and an expected O(n3/2+ε)-time algorithm [1]
for computing the minimum-width annulus for n points
in the plane. When the radius r of the aggregating cir-
cle is fixed, there is an O(n log n)-time algorithm [8, 10]
that finds the minimum-width annulus with median ra-
dius r.

For a sequence of n points in the increasing order of
x-coordinates in the plane, there has been a series of
work to find an x-monotone curve with minimum error
under various settings on the curve. When the curve is
a polyline, the segmented least squares algorithm finds
the polyline that minimizes a combination of the total
squared errors and the number of segments in the poly-
line in O(n2) time [4].

When the weights of the input points are the same,
we have wi+1 −wi = 0 for all i, and any rearrangement
〈q1, . . . , qn〉 has the same point for all qi’s. Thus, the
optimal rearrangement is achieved by the point q ∈ `
such that the smallest disk centered at q and enclosing
the input points has minimum radius among all enclos-
ing disks centered at points of `. There is an O(n)-time
algorithm [14] for finding the center, and an O(n log n)-
time algorithm for k centers restricted to a line [18].

Our results. We present efficient algorithms for find-
ing an optimal rearrangement among the rearrange-
ments of the sequence S of n points onto a line under
the Euclidean metric. For the case that the rearrange-
ment line ` is given, we observe that the cost of the
optimal rearrangement of S onto ` is determined by at
most two points, and present a simple O(n2)-time al-
gorithm. Then we improve the running time to near-
linear by applying several optimization techniques. We
present an expected O(n)-time algorithm using random-
ized optimization [6] and a deterministic O(n log log n)-
time algorithm using parametric search [7] with some
additional preprocessing.

For the case that only the orientation of the rear-
rangement line is given, we compute an optimal rear-
rangement line ` among all lines of the orientation and
an optimal rearrangement onto ` using a set of O(n)
convex functions, each representing the optimal rear-
rangement cost of a contiguous subsequence of S. The
upper envelope of those functions coincides with the
function of the optimal rearrangement cost of S. By
applying convex programming, our algorithm computes
an optimal rearrangement in O(n log n) time. For the
case that the rearrangement line is not specified at all,
we present an O(n3 polylog n)-time deterministic algo-
rithm that finds an optimal rearrangement line ` and an
optimal rearrangement onto `. Due to the page limit,
the detailed algorithms for the case that the rearrange-
ment line is not specified is given in Appendix.

2 Preliminaries

Let S = 〈p1, . . . , pn〉 denote the input sequence of
points, and w1, . . . , wn be their weights with w1 ≤ · · · ≤
wn. Throughout the paper, we mainly discuss the un-
weighted problem, so we assume wi = i for each i =
1, . . . , n, unless stated otherwise. For any 1 ≤ i ≤ j ≤ n,
we denote by Sij the contiguous subsequence of S from
pi to pj , that is, Sij = 〈pi, . . . , pj〉. Let ‖ · ‖ denote
the Euclidean norm on the plane so that we use ‖p− q‖
to denote the distance between two points p and q. A
sequence 〈qi, . . . , qj〉 of points is a rearrangement of Sij
onto a line ` if qk lies on ` and ‖qk′ − qk‖ ≤ wk′ −wk for
every k and k′ with i ≤ k ≤ k′ ≤ j. Its cost is defined
to be maxi≤k≤j ‖qk − pk‖.

An optimal rearrangement of S onto a line ` is a rear-
rangement with the minimum cost among all rearrange-
ments of S onto `. An optimal rearrangement of S onto
a set of lines is a rearrangement with the minimum cost
among all optimal rearrangement of S over the lines in
the set. We use δ∗(`) to denote the cost of an optimal
rearrangement of S onto `. We may simply write δ∗ if
it is understood from the context.

For a real number r ≥ 0, we denote by I(r) the seg-
ment of length 2r joining two points (−r, 0) and (r, 0)

CCCG 2021, Halifax, Canada, August 10–12, 2021

`

p1

D1(δ0)

δ0

`

pi

Di(δ0)

δ0

R1

Ri−1
Ri

Ri−1 ⊕ I(1)

(a) (b)

Figure 2: (a) R1 is defined as the intersection of D1(δ0)
and `. (b) Ri is defined as the intersection of Di(δ0)
and Ri−1 ⊕ I(1).

on the x-axis. We will often consider the Minkowski
sum of a compact set X in the plane and the segment
I(r), denoted by X ⊕ I(r).

3 Rearrangement onto a Fixed Line

In this section, we consider the problem when the rear-
rangement line is given as an input, so we are given a
sequence S = 〈p1, . . . , pn〉 and a line `, and want to find
an optimal rearrangement of S onto `. Without loss
of generality, assume that ` is the x-axis. For any real
number r, we abuse the notation so that r also denotes
the point (r, 0) on the x-axis ` if there is no confusion
from the context.

We first present an O(n)-time decision algorithm de-
termining for a given real value δ0 ≥ 0, whether there
exists a rearrangement of S with cost at most δ0. We
compute a feasible range Ri for each point pi of S,
representing the range in the x-axis in which qi of a
rearrangement 〈q1, . . . , qi〉 of S1i onto ` with cost at
most δ0 can be placed as follows: R1 = ` ∩ D1(δ0)
and Ri = (Ri−1 ⊕ I(1)) ∩ Di(δ0) for 1 < i ≤ n, where
Di(δ0) := {q | ‖q − pi‖ ≤ δ0} denotes the disk with
center pi and radius δ0. See Figure 2 for an illustration
of the ranges.

Lemma 1 There is a rearrangement of S1i with cost at
most δ0 and pi rearranged to qi if and only if qi ∈ Ri.

Proof. We first prove the if part by induction. If i = 1,
it is trivial. For any i > 1, we pick a point qi ∈ Ri. Then
we have (qi⊕I(1))∩Ri−1 6= ∅ as qi ∈ Ri−1⊕I(1). Pick a
point qi−1 in (qi⊕ I(1))∩Ri−1. Then, by the induction
hypothesis, there is a rearrangement 〈q1, . . . , qi−1〉 of
S1(i−1) with cost at most δ0. Since ‖qi − qi−1‖ ≤ 1,
〈q1, . . . , qi−1, qi〉 is a rearrangement of S1i with cost at
most δ0.

We now prove the only if part by induction. It is
trivial for i = 1. For any i > 1, let 〈q1, . . . , qi〉 be a
rearrangement of S1i with cost at most δ0. We have qi ∈
Ri−1⊕I(1) because ‖qi−1−qi‖ ≤ 1, and qi−1 ∈ Ri−1 by
the induction hypothesis. We also have qi ∈ ` ∩Di(δ0)

because the cost of the rearrangement is at most δ0.
Therefore, qi ∈ Ri. �

By Lemma 1, the decision problem can be answered
by checking whether Rn 6= ∅ (yes) or Rn = ∅ (no).
Since we can compute R1 in O(1) time, and Ri in O(1)
time once we have Ri−1, we can compute Rn in O(n)
time. If Rn 6= ∅, we can compute a rearrangement
〈q1, . . . , qn〉 of S in O(n) time, by choosing qn from Rn,
and then choosing qi from (qi+1⊕ I(1))∩Ri repeatedly
for i from n− 1 to 1.

Lemma 2 Given a point sequence S of n points, a line
`, and a real value δ0, we can decide whether there exists
a rearrangement of S onto ` with cost at most δ0 in O(n)
time. If such rearrangement exists, we can compute a
rearrangement of S with cost at most δ0 in O(n) time.

We present some characterizations of an optimal re-
arrangement of S. We first show that there are at most
two points of S which determine the cost δ∗ = δ∗(`) of
an optimal rearrangement in the following lemma.

Lemma 3 There exists an optimal rearrangement
〈q1, . . . , qn〉 of S onto ` satisfying one of the followings.

(1) There is a point pj in S such that ‖pj − qj‖ = δ∗

and qj is the orthogonal projection of pj onto `.
(2) There are two points pi and pj (i < j) in S such

that ‖pi − qi‖ = ‖pj − qj‖ = δ∗, ‖qi − qj‖ = j − i,
and both qi and qj lie in between the orthogonal
projections of pi and pj onto `.

Proof. Among the feasible ranges of the points of S for
δ∗, there must be a feasible range that is a single point.
Otherwise, there is a real value ε > 0 such that Rn 6= ∅
with cost (δ∗ − ε), which contradicts the optimality of
δ∗.

If a feasible range Rj is a single point, then ` is tan-
gent to Dj(δ

∗), or Dj(δ
∗) intersects Rj−1 ⊕ I(1) only

at an endpoint. The former case implies that qj is the
orthogonal projection of pj onto ` with ‖pj − qj‖ = δ∗,
and thus we have case (1). The latter case implies that
the common intersection of Di(δ

∗) ⊕ I(j − i), `, and
Dj(δ

∗) is just a single point for some i with 1 ≤ i < j.
Then, ‖pi − qi‖ = ‖pj − qj‖ = δ∗, ‖qj − qi‖ = j − i, and
both qi and qj lie in between the orthogonal projections
of pi and pj onto `. Thus, we have case (2). �

For an optimal rearrangement, we call the points of
S that satisfy cases (1) or (2) of Lemma 3 the determi-
nators of the rearrangement. We now define a value δij
for every two indices 1 ≤ i ≤ j ≤ n. Let qi and qj be the
points on ` minimizing max{‖pi − qi‖, ‖pj − qj‖} with
‖qi− qj‖ ≤ j − i. Then δij = max{‖pi− qi‖, ‖pj − qj‖}.
(Figure 3). Note that δjj is the length of the orthogonal
projection of pj to `. Then δij denotes the minimum
cost required by two points pi and pj of S such that
there is a rearrangement of S.

33rd Canadian Conference on Computational Geometry, 2021

pj

δjj
`

pi
pj

j − i

`
δij

δij

pi

< j − i

`

pj
δii δjj

(a) (b)

(d)

pi
pj

j − i

`
≤ δjj

δjj

(c)

Figure 3: (a) δjj is the length of the projection from
pj to `. (b) When the difference of x-coordinates be-
tween two points pi and pj (i < j) is bigger than j − i,
δij is defined by two points in between the orthogonal
projections of pi and pj with distance j − i. (c) One of
the points that define δij can be the orthogonal projec-
tion of pj , so that δij = δjj . (d) When the difference of
x-coordinates between two points pi and pj is smaller
than or equal to j − i, δij = max{δii, δjj}.

Lemma 4 δ∗ = maxi,j δij.

Proof. By Lemma 3, there is an optimal rearrange-
ment with determinators. If the optimal rearrangement
belongs to case (1) of Lemma 3, then δ∗ = δjj for the
determinator pj (Figure 3(a)). If it belongs to case (2)
of Lemma 3, then δ∗ = δij for the determinators pi and
pj . Therefore, δ∗ ≤ maxi,j δij holds (Figure 3(b)).

If δ∗ < δii, there is no point q ∈ ` such that
‖pi − q‖ ≤ δ∗, which is a contradiction. Assume that
there are two indices i, j (i < j) such that δ∗ < δij .
There is an optimal rearrangement Q∗ = 〈q∗1 , . . . , q∗n〉
with cost δ∗. However, ‖q∗i − q∗j ‖ > j − i holds by the
assumption, which contradicts that Q∗ is a rearrange-
ment. Therefore, maxi,j δij ≤ δ∗ holds. �

3.1 Randomized algorithm

This problem can be solved in O(n) expected time using
the randomized optimization technique by Chan [6] as
follows. We consider the weighted version of the prob-
lem in which a sequence S = 〈p1, . . . , pn〉 of n weighted
points is given, the weight of pi denoted by wi, satisfy-
ing wi ≤ wj for every pair of indices i, j with i < j. The
objective is to find a rearrangement Q = 〈q1, . . . , qn〉 of
S onto ` such that ‖qi − qj‖ ≤ wj − wi for every pair
of indices i, j with i ≤ j, and the rearrangement cost
maxi ‖pi − qi‖ is minimized.

Observe that Lemmas 2, 3, and 4 also hold for this
weighted version, by replacing the definition of Ri with
Ri = (Ri−1 ⊕ I(wi − wi−1)) ∩ Di(δ) (R1 remains the
same) and by replacing the condition ‖qi − qj‖ = j − i

in case (2) of Lemma 3 with ‖qi− qj‖ = wj −wi. Thus,
we have the following corollary.

Corollary 5 For a sequence S of n weighted points, a
line `, and a real value δ0, we can decide whether there
exists a rearrangement of S onto ` with cost at most δ0
in O(n) time.

Let S1, S2 and S3 be subsequences of S with
length at most dn/3e and S1;S2;S3 = S where
A;B is the concatenation of two sequences A and
B such that the elements of B comes after the last
element of A in the concatenation. Then δ(S) =
max{δ(S1;S2), δ(S1;S3), δ(S2;S3)} by Lemma 3, where
δ(A) denotes the optimal rearrangement cost of a se-
quence A. Therefore, by applying the randomized op-
timization technique by Chan, we obtain a randomized
algorithm to compute δ∗, which takes the time linear to
the running time of the decision algorithm, O(n). By
Lemma 2, we can compute a rearrangement with cost
δ∗ using O(n) additional time.

Theorem 6 Given a sequence S of n weighted points
and a line `, we can compute an optimal rearrangement
of S onto ` in expected O(n) time.

3.2 Deterministic algorithm

By Lemma 4, we get an O(n2)-time deterministic algo-
rithm to compute δ∗ that computes δij for every pair of
indices i, j with i ≤ j and returns the maximum value
among them. We present a more efficient deterministic
algorithm for the problem. We first extend the defini-
tion of Ri to define a function representing the range
that qi can be placed with respect to the position of q1
and the cost δ. We present sub-linear time sequential
and parallel decision algorithms using those functions
after preprocessing. By applying parametric search, we
obtain an O(n log log n)-time algorithm to compute the
optimal rearrangement cost δ∗.

Recall that Ri denotes the feasible range for pi of S
with a fixed cost. For the deterministic algorithm, we
consider Ri as a function of the cost variable δ and a
real value r, and thus we use Ri(δ, r) to denote the func-
tion. For a fixed cost δ0 and a fixed value r0, Ri(δ0, r0)
represents the range in ` on which qi of a rearrange-
ment 〈q1 = r0, . . . , qi〉 of S1i with cost at most δ0 can
be placed. Our algorithm takes S as input and com-
putes Rn(δ, r) in the rearrangements of S for all cost
values δ and real values r.

Characterization of Rn(δ, r) for a fixed cost δ0.
To characterize Ri(δ, r), we set δ to a fixed value δ0,
and use Ri(r) to denote Ri(δ0, r). Observe that Ri(r)
is an interval on ` and its two boundary points can be
described by functions Bi and Ti defined on r such that
Ri(r) = [Bi(r), Ti(r)]. In case that Ri(r) = ∅, Bi and

CCCG 2021, Halifax, Canada, August 10–12, 2021

Ti are not defined for r. We use domi to denote the
range of r for which Ri(r) 6= ∅, and thus Bi and Ti are
defined for r ∈ domi.

Observe that Ri(r) can be defined inductively as Ri
in the beginning of Section 3. We have R1(r) = [r, r]
which is defined for r ∈ dom1 = `∩D1(δ0), and Ri(r) =
(Ri−1(r)⊕ I(1)) ∩Di(δ0) for 1 < i ≤ n.

Lemma 7 There is a rearrangement 〈q1 = r, . . . , qn〉 of
S onto ` with cost at most δ0 if and only if qn ∈ Rn(r).

Proof. If S consists of one point, the lemma holds by
the definition of Rn(r). For S consisting of more than
one point, we prove the lemma by induction.

Assume qn ∈ Rn(r). Then Rn−1(r) 6= ∅, and this
implies r ∈ domn−1. Also, by the definition of Rn(r),
‖pn − qn‖ ≤ δ0 and there exists a point q′ ∈ Rn−1(r)
with ‖qn − q′‖ ≤ 1. By the induction hypothesis, we
get a rearrangement 〈q1 = r, . . . , qn−1〉 of S1(n−1) with
cost at most δ0. Then we obtain the rearrangement
〈q1 = r, . . . , qn−1, qn〉 of S with cost at most δ0.

Let Q = 〈q1 = r, . . . , qn−1, qn〉 be a rearrangement
of S onto ` with cost at most δ0. By the induction
hypothesis, we have r ∈ domn−1 and qn−1 ∈ Rn−1(r).
Since we have qn ∈ (qn−1 ⊕ I(1)) and qn ∈ Dn(δ0),
qn ∈ Rn(r) holds. �

Let bi and ti be the two boundary points of `∩Di(δ0)
with bi ≤ ti. If `∩Di(δ0) = ∅, bi and ti are not defined.
If ` is tangent to Di(δ0), bi = ti. We can check in
O(n) time whether bi and ti are defined for every i with
1 ≤ i ≤ n. Since there is a rearrangement with cost
δ0 only if bi and ti are defined for every i, we assume
that they are defined for every i in the remainder of this
section. In the following lemmas, we show that Bn(r),
Tn(r), and domn can be expressed using bi’s and ti’s.

Lemma 8 For r ∈ domn, Bn(r) = max1≤i≤n{r − n +
1, bi+ i−n} and Tn(r) = min1≤i≤n{r+n−1, ti− i+n}.

Proof. We prove the claim by induction. When n = 1,
[B1(r), T1(r)] = [r, r] = [r − 1 + 1, r + 1 − 1]. Since
b1 ≤ r ≤ t1 for any r ∈ dom1, the statement holds. For
an index j > 1, domj ⊆ domj−1 holds since Rj(r) 6= ∅
only if Rj−1(r) 6= ∅. Therefore, for r ∈ domj , r ∈
domj−1. Then [Bj(r), Tj(r)] = [Bj−1(r) − 1, Tj−1(r) +
1]∩[bj , tj]. Using the induction hypothesis, we can show
that Bj(r) = max{Bj−1(r)−1, bj} = max1≤i≤j{r− j+
1, bi + i − j} holds. We can show the claim for Tj(r)
similarly. �

Lemma 9 If domn 6= ∅, domn =
⋂

1≤i≤n[bi− i+ 1, ti+
i− 1].

Proof. Let Rrev
j denote the range in ` on which qj of

a rearrangement 〈qj , . . . , qn〉 of Sjn with cost at most
δ0 can be placed. By Lemma 7, r ∈ domn if and only

Tn(r)

Bn(r)

r
domn

Rn(r)

Figure 4: Rn(r) = [Bn(r), Tn(r)], where Bn and Tn
defined in domn have constant complexity.

if there is a rearrangement 〈q1 = r, . . . , qn〉 of S onto `
with cost at most δ0. Therefore, Rrev

1 = domn. We show
that Rrev

j =
⋂
j≤i≤n[bi− i+ j, ti + i− j] by induction on

j from n to 1.
As the base case, Rrev

n = ` ∩ Dn(δ0) = [bn, tn]. For
any j < n, let Rrev

j 6= ∅. As r ∈ Rrev
j if and only if r ∈

(Rrev
j+1 ⊕ I(1)) and r ∈ Dj(δ0), Rrev

j+1 6= ∅. Then by the
induction hypothesis, we have the following equation.

Rrev
j+1 =

⋂
j+1≤i≤n

[bi − i+ (j + 1), ti + i− (j + 1)]

Since Rrev
j = (Rrev

j+1 ⊕ I(1)) ∩ [bj , tj], the claim holds.
Therefore, we conclude domn = Rrev

1 =
⋂

1≤i≤n[bi − i+
1, ti + i− 1] if domn = Rrev

1 6= ∅. �

Observe that domn = ∅ if Rrev
j = ∅ for some j, even

when
⋂

1≤i≤n[bi − i + 1, ti + i − 1] 6= ∅. Therefore,
we have to check whether domn = ∅. By Lemma 8,
each of Bn and Tn consists of at most two segments as
max1≤i≤n{bi − n+ i} and min1≤i≤n{ti + n− i} remain
unchanged for different r values. See Figure 4.

Observation 1 Bn(r) consists of at most two seg-
ments, one with slope 0 followed by one with slope 1.
Tn(r) consists of at most two segments one with slope 1
followed by one with slope 0.

Observe that Rn(r) = [Bn(r), Tn(r)] is determined by
at most four points of S with indices (a) arg maxi{bi +
i} and (b) arg mini{ti − i} from Lemma 8, and (c)
arg maxi{bi− i} and (d) arg mini{ti+ i} from Lemma 9.
If domn 6= ∅, domn = [b(c)− (c) + 1, t(d) + (d)−1]. For a
real value r ∈ domn, Bn(r) = max{r−n+1, b(a) +(a)−
n} and Tn(r) = max{r + n− 1, t(b) − (b) + n}. We call
the set of those four points the combinatorial structure
of Rn(r) for δ0.

Computing Rn(δ, r) = [Bn(δ, r), Tn(δ, r)]. Let Bij(r)
and Tij(r) denote the two boundary points of the fea-
sible range Rij(r) = [Bij(r), Tij(r)] of pj with re-
spect to the subsequence Sij with pi rearranged to r.
We can compute Bn(r) and Tn(r) using the feasible

33rd Canadian Conference on Computational Geometry, 2021

ranges [B1k(r), T1k(r)] and [Bkn(r), Tkn(r)] of two sub-
sequences S1k and Skn of S for any k with 1 < k < n
in O(1) time.

Lemma 10 We can compute Bn(r) and Tn(r) of S in
O(1) time once we have B1k(r), T1k(r), Bkn(r), and
Tkn(r) for any k with 1 < k < n.

Proof. We first check whether domn = ∅. Let
dom1k = [r1, r2], which is the domain of functions
B1k(r) and T1k(r). Note that B1k(r) and T1k(r) are
monotonically increasing functions by Observation 1.
Then the maximal range that qk of a rearrangement
〈q1, . . . , qk〉 of S1k with cost at most δ0 can be placed is
[B1k(r1), T1k(r2)]. There is a rearrangement of S if and
only if [B1k(r1), T1k(r2)] ∩ domkn 6= ∅, where domkn is
the domain ofBkn(r) and Tkn(r). We can check whether
domn = [B1k(r1), T1k(r2)] ∩ domkn = ∅ in O(1) time. If
domn 6= ∅, we can find the combinatorial structure of
Rn(r) from the combinatorial structures of R1k(r) and
Rkn(r) by O(1) comparisions. After finding the combi-
natorial structure, we can compute Bn(r) and Tn(r) of
S in O(1) time. �

Now we treat δ also as a variable of the feasible
range Ri and its boundary points Bi and Ti so that
qi ∈ Ri(δ, r) = [Bi(δ, r), Ti(δ, r)] holds if and only if
there exists a rearrangement 〈r, . . . , qi〉 of S1i with cost
at most δ. We also use δ as a variable of two boundary
points bi(δ) and ti(δ) of `∩Di(δ) with bi(δ) ≤ ti(δ). We
compute Rn(δ, r) by storing all different combinatorial
structures over δ in increasing order of δ.

Lemma 11 The combinatorial structure of Rn(δ, r)
changes O(n) times over δ.

Proof. We prove that arg maxi{bi(δ) + i} changes at
most O(n) times for δ increasing from 0 to ∞. For
any two indices i and j, bi(δ) + i = bj(δ) + j holds for
at most one δ value. Therefore, if arg maxi{bi(δ) + i}
changes from j to j′ at δ′, j = arg maxi{bi(δ) + i} does
not hold for δ > δ′. This implies that each index be-
comes arg maxi{bi(δ)+i} for at most one interval, which
bounds the number of changes to O(n) in total. We can
bound the numbers of changes of arg mini{ti(δ) − i},
arg maxi{bi(δ)− i}, and arg mini{ti(δ) + i} in the same
way. �

Let Bij(δ, r) and Tij(δ, r) denote the two
boundary points of the feasible range Rij(δ, r) =
[Bij(δ, r), Tij(δ, r)] of pj with respect to Sij with
pi rearranged to r. We can compute Bn(δ, r) and
Tn(δ, r) using the feasible ranges [B1k(δ, r), T1k(δ, r)]
and [Bkn(δ, r), Tkn(δ, r)] of two subsequences S1k and
Skn of S for any k with 1 < k < n in O(n) time.

Lemma 12 We can compute Rn(δ, r) of S in O(n)
time once we have R1k(δ, r), and Rkn(δ, r) for any k
with 1 < k < n.

Proof. The functions R1k(δ, r) and Rkn(δ, r) consist of
O(k) and O(n − k) combinatorial structures, respec-
tively, by Lemma 11. As they are stored in the increas-
ing order of δ, we simply merge the functions to compute
Rn(δ, r) in increasing order of δ. For each range where
the combinatorial structures of R1k(δ, r) and Rkn(δ, r)
remain the same, we can compute Rn(δ, r) in O(1) time
by Lemma 10. As there are O(n) such ranges, the algo-
rithm takes O(n) time in total. �

By Lemma 12, we can compute Bn(δ, r) and Tn(δ, r)
of S in O(n log n) time applying divide and conquer.

Lemma 13 We can compute Bn(δ, r) and Tn(δ, r) in
O(n log n) time.

Optimization algorithm using parametric search.
By Lemma 13, we have an O(n log n)-time algorithm for
computing an optimal rearrangement as follows: Com-
pute Rn(δ, r) = [Bn(δ, r), Tn(δ, r)] in O(n log n) time,
and find δ∗ which is the minimum value of δ satisfy-
ing domn 6= ∅. Using O(n) additional time, the algo-
rithm computes an optimal rearrangement by Lemma 2.
Here, we present an algorithm using Cole’s paramet-
ric search [7] to further improve the running time to
O(n log log n) time.

Before applying parametric search, our algorithm pre-
processes the feasible ranges of subsequences. The algo-
rithm subdivides S into dn/te subsequences, each con-
sisting of at most t + 1 points for some parameter t,
which will be chosen later. Every two consecutive sub-
sequences share a point and S is entirely covered by
the subsequences. For each subsequence, the algorithm
computes the feasible range over all δ values. This pro-
cedure takes O(t log t) time for each subsequence, and
thus it takes O(n log t) time in total.

After the preprocessing, the algorithm determines (se-
quentially) whether δ ≥ δ∗ as follows. It finds the com-
binatorial structure of the feasible range of each sub-
sequence with respect to δ using binary search. This
takes O(log t) time for each subsequence, and thus it
takes O((n log t)/t) time in total. Then the algorithm
merges the feasible ranges in the sequential order to de-
termine whether domn = ∅ for δ. This takes O(1) time
for merging two feasible ranges in the order, and thus
it takes O(n/t) time in total, which is dominated by
O((n log t)/t) time.

With the preprocessing, we present a parallel deci-
sion algorithm using O(n/t) processors. The algorithm
finds the combinatorial structure of the feasible range
with respect to δ by assigning a processor for each sub-
sequence. Then for the remaining steps, the algorithm
merges two consecutive feasible ranges using a proces-
sor. After O(log n) merge steps, the algorithm computes
Rn(δ, r). This procedure takes O(1) time for each of
O(log n) steps, after finding the combinatorial structure

CCCG 2021, Halifax, Canada, August 10–12, 2021

of feasible range for each subsequence in O(log t) time.
Thus, it takes O(log n) time in total. As each process
of the parallel algorithm depends on at most two other
processes, we can apply Cole’s parametric search [7].

By applying parametric search, the algorithm can
compute the optimal rearrangement cost δ∗ in O(PTP +
TS(TP + logP)) = O((n log n log t)/t) time after
O(n log t)-time preprocessing, where P = O(n/t) is the
number of processors needed for parallel decision, TP is
the running time of our parallel decision algorithm, and
TS is the running time of our sequential decision algo-
rithm. Setting t = log n, we obtain an O(n log log n)-
time algorithm. After finding δ∗ in O(n log log n) time,
we can find an optimal rearrangement of S using O(n)
additional time by Lemma 2.

Theorem 14 For a sequence S of n points and a line
`, we can compute an optimal rearrangement of S onto
` in O(n log log n) time.

3.3 Weighted version

In this section, we show that the deterministic algo-
rithm of Section 3.2 can be extended to the weighted
version without increasing the time complexity. Ob-
serve that Lemma 7 also holds for the weighted version,
by replacing the definition of Ri(r) = [Bi(r), Ti(r)] for
fixed δ0 with Ri(r) = (Ri−1(r)⊕ I(wi−wi−1))∩Di(δ0)
(R1(r) remains the same). Then we can show that
Ri(r) is determined by at most four points of S with
indices (a) arg maxi{bi +wi}, (b) arg mini{ti−wi}, (c)
arg maxi{bi−wi}, and (d) arg mini{ti+wi} as shown in
Lemmas 8 and 9. Observe that the points determining
Ri(δ, r) change O(n) times over δ as in Lemma 11, we
obtain O(n log log n)-time algorithm using parametric
search.

Theorem 15 For a sequence S of n weighted points
and a line `, we can compute an optimal rearrangement
of S onto ` in O(n log log n) time.

4 Rearrangement onto a Line with Fixed Orienta-
tion

Recall that δ∗(`) denotes the cost of an optimal re-
arrangement of S onto a line `. Given a sequence
S = 〈p1, . . . , pn〉 of n points and an orientation ~c, we
find a line ` such that δ∗(`) is minimum among all lines
parallel to ~c in the plane, and compute an optimal re-
arrangement of S onto `.

Without loss of generality, we assume that the orien-
tation is horizontal, and thus our target line is horizon-
tal. For a real value h, we use `(h) to denote a horizontal
line with y = h.

We compute an optimal rearrangement using a func-
tion that represents the optimal rearrangement cost of

S onto all horizontal lines. In doing so, we first com-
pute a convex function for a contiguous subsequence of
S that partially describes the optimal rearrangement
cost of the subsequence. We do this for O(n) contigu-
ous subsequences of S so that the upper envelope of
those functions coincides with the function of the opti-
mal rearrangement cost of S. By applying convex pro-
gramming on the upper envelopes of disjoint subsets of
functions, we can find a horizontal line ` such that δ∗(`)
is minimum among all horizontal lines, and get the op-
timal rearrangement cost of S onto `.

We abuse the function δ∗ so that for a real value
h, δ∗(h) = δ∗(`(h)) denotes the optimal rearrangement
cost of S onto `(h), as defined in Section 3. Then our
goal is to minimize δ∗(h) over all h ∈ R. Let h∗ de-
note a real value such that δ∗(h∗) = minh δ

∗(h), and let
δ∗ := δ∗(h∗) denote the optimal cost over all horizontal
lines. Note that once we know h∗, we can find an opti-
mal rearrangement of S onto `(h∗) with cost δ∗ in O(n)
time by Lemma 2.

Let us define two distance functions, δij(h) and
σij(h), for two indices i, j with 1 ≤ i ≤ j ≤ n with
respect to a horizontal line `(h) for a real value h as
follows.

Recall the definition of δij from Section 3. We define
a function δij(h) of a real value h with respect to `(h)
for every two indices i ≤ j similarly. Let qi and qj be the
points on `(h) minimizing max{‖pi−qi‖, ‖pj−qj‖} with
‖qi−qj‖ ≤ j−i. Then δij(h) = max{‖pi−qi‖, ‖pj−qj‖}.
By Lemma 4, δ∗(h) = maxi,j δij(h) for any fixed h. Let
d(p, s) = minq∈s ‖p−q‖ denote the distance from a point
p to a line segment s. For a point pi ∈ S and an index
k, let sik = pi ⊕ I(|i − k|) denote the horizontal line
segment of length 2 · |i − k| with midpoint pi. In case
i = k, sik is a degenerate line segment with length 0.

Lemma 16 δij(h) = minq∈`(h) max{d(q, sik), d(q, sjk)}
for any index k with i ≤ k ≤ j,

Proof. If i = j, the lemma holds obviously as both
sides denote the distance from pj to `(h) (Figure 5(a)).

Consider the case that i < j. If |x(pi) − x(pj)| ≤
j − i, we have δij(h) = max{δii(h), δjj(h)} by defini-
tion. Moreover, there is a point q ∈ `(h) such that the
vertical line through q intersects both sik and sjk. For
any such point q, we have max{d(q, sik), d(q, sjk)} =
max{δii(h), δjj(h)} (Figure 5(b)).

If |x(pi)−x(pj)| > j− i, there are two points ui, uj ∈
`(h) such that ‖ui−uj‖ = j− i and δij(h) = max{‖pi−
ui‖, ‖pj − uj‖} by the definition of δij(h). Let q be the
point on `(h) such that ‖q−ui‖ = k−i and ‖q−uj‖ = j−
k. Then ‖pi − ui‖ = d(q, sik) and ‖pj − uj‖ = d(q, sjk),
and for any point r ∈ `(h), either d(r, sik) ≥ d(q, sik)
or d(r, sjk) ≥ d(q, sjk). Therefore, we conclude that
δij(h) = max{d(q, sik), d(q, sjk)} (Figure 5(c)). �

33rd Canadian Conference on Computational Geometry, 2021

sjk

`(h)

sik

sjk

`(h)

(a) (c)

sik
sjk

`(h)

(b)

wi q wjq

pj pi
pj pi

pj

Figure 5: (a) If i = j, δij(h) is the distance
from pj to `(h). (b) If |x(pi) − x(pj)| ≤ j − i,
max{d(q, sik), d(q, sjk)} = max{δii(h), δjj(h)} for any
point q ∈ `(h) such that the vertical line through q in-
tersects both sik and sjk. (c) If |x(pi)− x(pj)| > j − i,
we can find a point q on `(h) such that δij(h) =
max{d(q, sik), d(q, sjk)}.

We now define another function σij(h) for two in-
dices i, j with 1 ≤ i ≤ j ≤ n as follows. Let far(p,A) =
maxl∈A d(p, l) for a point p ∈ R2 and a set A of hori-
zontal line segments. Let Lab = {sta | a ≤ t ≤ b} and
Rab = {stb | a ≤ t ≤ b} be sets of segments.

σij(h) = min
q∈`(h)

far(q,Rik ∪ Lkj), for k = d(i+ j)/2e.

We now show that σij(h) is a convex function consist-
ing of O(j − i) pieces of quadratic functions. Also, we
show that there are O(n) pairs of indices such that the
upper envelope of σij(h)’s for the pairs coincides with
δ∗(h). The farthest-site Voronoi diagram for line seg-
ments in A, denoted by Vor(A) decomposes the plane
into regions such that every point p in the same region
has the same farthest line segment l among the line seg-
ments in A, that is, d(p, l) = far(p,A) for every point p
in the region. By computing Vor(A) for a given set A,
we identify a full description of far(p,A). It is known by
Aurenhammer et al. [3] that Vor(A) consists of O(|A|)
vertices, edges, and cells. Using this property, we prove
the following lemma.

Lemma 17 σij(h) is a convex function consisting of
O(j − i) pieces of quadratic functions.

Proof. Let A = Rik ∪ Lkj with k = d(i + j)/2e. Since
d(q, l) is a convex function of q ∈ R2 for any fixed line
segment l ∈ A, F (q) := far(q, A) is also convex. There-
fore, σij(h) = minq∈`(h) F (q) is convex. For a value
h ∈ R, let Fh(q) := F |`(h)(q) be a function of q ∈ `(h),
and Q(h) be the set of points in `(h) minimizing Fh.
Then δij(h) = Fh(q) = far(q, A) for any q ∈ Q(h). Since
Fh is convex, Q(h) forms a line segment on `(h), possi-
bly being degenerate to a point.

Let l ∈ A be a farthest segment from Q(h), which
is a farthest segment from every point q ∈ Q(h). Then
σij(h) = d(q, l) for any q ∈ Q(h). Note that there can be
more than two farthest segments fromQ(h). We analyze
σij(h) when the number of the farthest segments from
Q(h) is (1) one, (2) two, or (3) more than two.

`(h)

l1

l2

l3

l2

l3

l1

(a) (b) (c)

Figure 6: q ∈ Q(h) is marked as a red dot. For each q,
red segments are the farthest segments of A from q. (a)
When there is one farthest segment, σij(h) is a linear
function. (b) When there are two farthest segments,
σij(h) is a quadratic function. (c) If there are more
then two farthest segments, q lies on the Voronoi vertex
of Vor(A).

(1) Let l1 be the farthest segment of Q(h). Then there
is a point q ∈ Q(h) lying in the interior of the cell
of l1 in Vor(A). Therefore, σij(h) = d(q, l1) is the
difference of y-coordinate of q and l1, which is a
linear function of h (Figure 6(a)). Note that l1 is
a segment with either the largest or the smallest
y-coordinate value among the segments in A.

(2) Let l2 and l2 be the farthest segments of Q(h).
Then there must be a Voronoi edge defined by l2
and l3 in Vor(A), and Q(h) is the intersection of
`(h) and the Voronoi edge. If the Voronoi edge is
a parabolic curve, we can find a point q ∈ `(h)
that lies in the interior of the cell of l2 or l3 with
F (q) = σij(h) as l2 and l3 are horizontal segments
which makes one of two segments not farthest seg-
ment from Q(h). Therefore, the Voronoi edge must
be a line segment, which is the bisector of the end-
points of the segments. Thus, δij(h) is a quadratic
function of h (Figure 6(b)).

(3) Let l1, l2, and l3 be three farthest segments of Q(h).
Then there must be a Voronoi vertex defined by the
segments in Vor(A) and Q(h) is the Voronoi vertex
(Figure 6(c)).

There are at most two (unbounded) intervals of h
with case (1). For the case (2), the farthest segments
from Q(h) do not change while increasing h until `(h)
hits a Voronoi vertex of Vor(A) to make the case (3).
As there are O(j − i) vertices of Vor(A), σij(h) consists
of O(j − i) partial quadratic functions. �

By Lemma 17, the algorithm can compute the func-
tion σij(h) from Vor(A) in O(j− i) time as follows. The
algorithm first identify far(p,A) from Vor(A) in O(j− i)
time. Then it computes σij(h) from far(p,A) by keeping
track of Q(h) and the farthest segments of Q(h) while
increasing h from −∞ to ∞. As the farthest segments
of Q(h) changes O(j − i) times and each change can be
identified from a Voronoi vertex of Vor(A) in O(1) time,
the algorithm takes O(j − i) time in total.

CCCG 2021, Halifax, Canada, August 10–12, 2021

Since far(q, A) is induced by Vor(A), σij(h) is the ra-
dius of the smallest disk intersecting every segment in
Rik ∪ Lkj whose center is restricted to lie on `(h). If the
center is determined by a single line segment sak, then
σij(h) = δaa(h). If the center is determined by two line
segments, sak and sbk with a ≤ k ≤ b, σij(h) = δab(h).
We prove these relations between σij(h) and δab(h) in
Lemmas 18 and 19.

Lemma 18 For any value h, there is a pair (i′, j′) with
i ≤ i′ ≤ j′ ≤ j such that σij(h) ≤ δi′j′(h).

Proof. There is a segment sak with i ≤ a ≤ j such
that minq∈`(h) d(q, sak) = σij(h), or there are two
segments sak, sbk with i ≤ a < b ≤ j such that
minq∈`(h) max{d(q, sak), d(q, sbk)} = σij(h).

In the first case, σij(h) = δaa(h). In the second
case, let q∗ be a point on `(h) such that σij(h) =
max{d(q∗, sak), d(q∗, sbk)}. Then σij(h) = δab(h) for
a ≤ k and k ≤ b. When b < k, sab ⊂ sak and sbb ⊂
sbk. Therefore, σij(h) = max{d(q∗, sak), d(q∗, sbk)} ≤
max{d(q∗, sab), d(q∗, sbb)} = δab(h). We can show that
σij(h) ≤ δab(h) for k < a similarly. �

Lemma 19 For any index pair (i′, j′) with i ≤ i′ ≤
d(i+ j)/2e ≤ j′ ≤ j, we have δi′j′(h) ≤ σij(h).

Proof. For any fixed index a with i ≤ a ≤ j and
k = d(i+ j)/2e, d(q, sak) for q ∈ `(h) is convex. There-
fore, σij(h) = maxi≤a≤b≤j minq∈`(h) far(q, {sak, sbk}).
As minq∈`(h) far(q, {sak, sbk}) = δab(h) for i ≤ a ≤ k
and k ≤ b ≤ j, the inequality holds. �

Data structures and algorithm. Let T be a binary
tree such that the root corresponds to S = S1n, each in-
ternal node v corresponds to a subsequence Sab of S for
some a ≤ b with its left and right children corresponding
to Sac and Scb, respectively, for c = d(a + b)/2e. Each
leaf node of T corresponds to a subsequence consisting
of a single point, so T has O(n) nodes and its height
is O(log n). At each node v of T corresponding to Sab,
we store δv(h) = σab(h). Then we show the following
lemma.

Lemma 20 For any value h, δ∗(h) = maxv∈T δv(h).

Proof. For a node v of T , δv(h) ≤ max1≤i≤j≤n δij(h) =
δ∗(h) by Lemma 18. So we have maxv∈T δv(h) ≤ δ∗(h).

We now show maxv∈T δv(h) ≥ δ∗(h). For any two
indices i, j with 1 ≤ i ≤ j ≤ n, let v ∈ T be the lowest
node of T such that its corresponding subsequence Sab
contains both pi and pj , that is, a ≤ i ≤ j ≤ b. Note
that δv(h) = σab(h). Further, by our construction, a ≤
i ≤ d(a+ b)/2e ≤ j ≤ b. Then, by Lemma 19, δij(h) ≤
δv(h). Hence, δ∗(h) = maxi,j δij(h) ≤ maxv δv(h). �

The algorithm computes δv(h) for nodes v ∈ T in
bottom-up fashion. For each node v corresponding to
Sab, the algorithm stores Vor(Rab) and Vor(Lab). If v
is a leaf node, the algorithm computes δv(h) in O(1)
time. If v is an internal node, the algorithm computes
δv(h) in time linear to the length of the corresponding
subsequence of v by using Vor(Rac) and Vor(Lcb) with
c = d(a + b)/2e stored in the child nodes of v. The
details on computing δv(h) for an internal node v are in
the following.

Since every cell in Vor(A) is unbounded, there is
a cyclic order of the cells of Vor(A) along a closed
curve at infinity. The algorithm by Aurenhammer et
al. [3] computes Vor(A) in two stages: finds out the
cyclic order of the cells in O(|A| log |A|) time, and then
constructs the diagram based on the order in addi-
tional O(|A| log |A|) time. Later, Khramtcova and Pa-
padopoulou [13] showed that the second stage can be
done in O(|A|) time. From the two results, we have the
following lemma.

Lemma 21 Given Vor(A) and Vor(B) for two sets A
and B of O(n) line segments in total, we can compute
Vor(A ∪B) in O(n) time.

Proof. We can compute the cyclic order of the cells of
Vor(A) and the cyclic order of the cells of Vor(B) inO(n)
time. Then we can merge them into the cyclic order of
cells of Vor(A ∪ B) in O(n) time using the algorithm
by Aurenhammer et al. [3]. Finally, we can compute
Vor(A ∪B) based on the order in O(n) time [13]. �

Now we present an O(n) time algorithm to compute
Vor(Rab) from Vor(Rac) and Vor(Rcb) for c = d(a+b)/2e.
We first compute Vor(Rac ⊕ I(b− c)).

Lemma 22 For a set A of horizontal line segments, the
cyclic order of the cells of Vor(A) and the cyclic order
of the cells of Vor(A ⊕ I(r)) are the same for any real
value r > 0.

Proof. For a direction ~d, we use C(~d) to denote the
cell of a farthest-site Voronoi diagram such that for any
point p, there is a point q on the ray of direction ~d
emanated from p such that q ∈ C(~d). For Vor(A), C(~d)
is the cell of site l ∈ A if and only if there exists an open
half plane with inner normal vector ~d that intersects all
the line segments of A \ {l} but not l. Let h be an
open half plane that intersects every line segment of
A \ {l}. Let h′ be the translate of h along the x-axis

towards ~d by r. Then h′ intersects every line segment of
(A\{l})⊕I(r) but not l⊕I(r). Therefore, for any fixed

direction ~d, Vor(A) and Vor(A⊕I(r)) have the same site

(line segment) defining C(~d) in their diagrams. �

Therefore, the algorithm can compute Vor(Rac⊕I(b−
c)) from Vor(Rac) in linear time by Lemma 22. As

33rd Canadian Conference on Computational Geometry, 2021

Rab = (Rac ⊕ I(b − c)) ∪ Rcb, the algorithm can also
compute Vor(Rab) in linear time by Lemma 21. Com-
puting Vor(Lab) can be done in linear time as well.

For an internal node v ∈ T , the algorithm computes
Vor(Rac∪Lcb) from Vor(Rac) and Vor(Lcb) in linear time
by Lemma 21. Then the algorithm computes δv(h) from
Vor(Rac ∪ Lcb) in linear time by Lemma 17. Therefore,
we can conclude the following lemma.

Lemma 23 We can compute an explicit description of
function δv(h) for all nodes v of T in O(n log n) time.

Convex programming with δv(h)’s. Recall that
δv(h) for each node v is convex by Lemma 17. To find
the lowest point on the function δ∗(h), the algorithm
computes h∗ and δ∗(h∗) using convex programming by
taking δv(h) as a constraint for each v and f(h) = h as
the objective function. Chan [5] showed that the convex
programming can be done by O(k log k) primitive opera-
tions, where k is the number of constraints and the prim-
itive operations are (1) to find a point that optimizes
the objective function while satisfying two constraints,
or (2) to find intersections between a constraint and a
line. Our problem consists of O(n) constraints (δv(h)’s)
and the primitive operation takes O(log n) time as there
are O(n) nodes in T and δv(h) consists of O(n) partial
functions. Therefore, we obtain an O(n log2 n)-time al-
gorithm to compute h∗ and δ∗(h∗). However, as the
complexity of δv(h) varies through the nodes of T , we
can reduce the number of constraints without increasing
the time complexity of primitive operation as follows.

Improving time complexity. For a node u with
corresponding subsequence of length L with dlog ne ≤
L < 2dlog ne, we compute the upper envelope of δv(h)
for nodes v in the subtree with root u. Observe that
the upper envelope consists of O(log n log log n · 2α(n))
partial functions, where α(·) is the inverse Ackermann
function [16]. The bound comes from the fact that ev-
ery partial function of δv(h) is a quadratic function by
Lemma 17, so that any two partial functions intersect at
most twice. Thus we can compute the upper envelope
in O(log n log2 log n · 2α(n)) time. There are O(n/ log n)
such nodes, and thus computing the upper envelopes for
all such nodes takes O(n log2 log n · 2α(n)) time. Thus,
we have O(n/ log n) convex constraints, each consisting
of O(n) partial functions. Therefore, convex program-
ming can be done in O(n log n) time. Since all δv(h)’s
can be computed in O(n log n) time by Lemma 23, h∗

and δ∗(h∗) can be computed in O(n log n) time. Then
the algorithm computes an optimal rearrangement of S
onto `(h∗) in O(n) time by Lemma 2.

Theorem 24 For a sequence S of n points and an ori-
entation, we can compute an optimal rearrangement of
S onto a line with the orientation in O(n log n) time.

4.1 Weighted version

In this section, we show that the algorithm above can
be extended to weighted version without increasing the
time complexity. By changing the definition of sik to
pi⊕I(wk−wi), Lemmas 17 and 20 hold for the weighted
version. Therefore, by Lemmas 21 and 22, we can com-
pute δv(h) for each node v in T in time linear to the
length of the corresponding subsequence in bottom-up
fashion. By computing δv(h)’s for nodes v in T , we
obtain the following theorem.

Theorem 25 For a sequence S of n weighted points
and an orientation, we can compute an optimal re-
arrangement of S onto a line with the orientation in
O(n log n) time.

5 Rearrangement into an Arbitrary Line

Given a sequence of S = 〈p1, . . . , pn〉 of n points in the
plane, we find a line ` such that the optimal rearrange-
ment cost δ∗(`) of S onto ` is minimum among all lines
in the plane, and compute an optimal rearrangement of
S onto `.

Due to the limit of space, the detailed algorithm is
given in Appendix.

Theorem 26 For a sequence S of n points, we can
compute an optimal rearrangement of S onto any line
in O(n3 polylog n) time.

Theorem 27 For a sequence S of n weighted points,
we can compute an optimal rearrangement of S onto
any line in O(n3 polylog n) time.

6 Conclusion

We consider the problem of finding an optimal rear-
rangement of sequence of n points onto a line. We
present an expected O(n)-time algorithm and deter-
ministic O(n log log n)-time algorithm for a given line.
When the rearrangement line is given only by its orien-
tation or not specfied at all, we present O(n log n)-time
and O(n3 polylog n)-time algorithm, respectively.

Our algorithms are described for solving the rear-
rangement problems under the Euclidean metric, but
they can be applied to the cases that the underlying
metric is Lp or has the distance function of constant
complexity.

There are a few works to study. One is to improve
the deterministic time complexity to linear for a given
rearrangement line, or to show a tight time bound on
the problem. Another one is to study the optimal rear-
rangement problem for more general objects.

CCCG 2021, Halifax, Canada, August 10–12, 2021

References

[1] P. Agarwal and M. Sharir. Efficient randomized algo-
rithms for some geometric optimization problems. Dis-
crete Computational Geometry, 16:317–337, 1996.

[2] P. Agarwal, M. Sharir, and S. Toledo. Applications of
parametric searching in geometric optimization. Jour-
nal of Algorithms, 17(3):292–318, 1994.

[3] F. Aurenhammer, R. Drysdale, and H. Krasser. Far-
thest line segment Voronoi diagrams. Information Pro-
cessing Letters, 100(6):220–225, 2006.

[4] R. Bellman and R. Roth. Curve fitting by segmented
straight lines. Journal of the American Statistical As-
sociation, 64(327):1079–1084, 1969.

[5] T. M. Chan. Deterministic algorithms for 2-d convex
programming and 3-d online linear programming. Jour-
nal of Algorithms, 27(1):147–166, 1998.

[6] T. M. Chan. Geometric applications of a randomized
optimization technique. Discrete & Computational Ge-
ometry, 22:547–567, 1999.

[7] R. Cole. Slowing down sorting networks to obtain faster
sorting algorithms. Journal of the ACM, 34(1):200–208,
Jan. 1987.

[8] M. de Berg, P. Bose, D. Bremner, S. Ramaswami,
and G. Wilfong. Computing constrained minimum-
width annuli of point sets. Computer-Aided Design,
30(4):267–275, 1998. Computational Geometry and
Computer-Aided Design and Manufacturing.

[9] M. de Berg, O. Cheong, M. van Kreveld, and M. Over-
mars. Computational Geometry: Algorithms and Ap-
plications. Springer-Verlag TELOS, Santa Clara, CA,
USA, 3rd ed. edition, 2008.

[10] C. A. Duncan, M. T. Goodrich, and E. A. Ramos. Ef-
ficient approximation and optimization algorithms for
computational metrology. In Proceedings of the 8th An-
nual ACM-SIAM Symposium on Discrete Algorithms,
SODA 1997, page 121–130, USA, 1997. Society for In-
dustrial and Applied Mathematics.

[11] R. L. Graham. An efficient algorith for determining the
convex hull of a finite planar set. Information Process-
ing Letters, 1(4):132–133, 1972.

[12] M. E. Houle and G. T. Toussaint. Computing the width
of a set. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 10(5):761–765, 1988.

[13] E. Khramtcova and E. Papadopoulou. Linear-time al-
gorithms for the farthest-segment Voronoi diagram and
related tree structures. In Proceedings of the 26th Inter-
national Symposium on Algorithms and Computation,
ISAAC 2015, pages 404–414, 2015.

[14] N. Megiddo. Linear-time algorithms for linear program-
ming in R3 and related problems. SIAM Journal on
Computing, 12(4):759–776, 1982.

[15] F. P. Preparata. New parallel-sorting schemes. IEEE
Transactions on Computers, C-27(7):669–673, 1978.

[16] M. Sharir and P. K. Agarwal. Davenport-Schinzel Se-
quences and Their Geometric Applications. Cambridge
University Press, USA, 2010.

[17] L. G. Valiant. Parallelism in comparison problems.
SIAM Journal on Computing, 4(3):348–355, 1975.

[18] H. Wang and J. Zhang. Line-constrained k-median, k-
means, and k-center problems in the plane. Interna-
tional Journal of Computational Geometry & Applica-
tions, 26(03n04):185–210, 2016.

33rd Canadian Conference on Computational Geometry, 2021

Appendix

Detailed Algorithm of Section 5

We present a sequential decision algorithm and a paral-
lel decision algorithm, both determining whether δ0 ≥
δ∗ for given δ0, where δ∗ is the minimum δ∗(`) among
all lines ` in the plane. We apply Cole’s parametric
search [7] using the decision algorithms. For a line in
the plane, we use the y-coordinate of y-intercept of the
line as the height of the line. We say a line has an ori-
entation α for α ∈ [0, π) if the counterclockwise angle
from x-axis to the line is α. We use `(h, α) to denote
the line of height h and an orientation α.

Sequential decision algorithm We are given a real
value δ0. For an orientation α, and 1 ≤ i ≤ j ≤ n, we
define two functions hij(α) and lij(α). We use hij(α) to
denote the maximum height h such that there are trans-
lations of pi and pj onto `(h, α) with length at most δ0
and the distance between the translates is at most j− i.
We define lij(α) as the minimum height as well. If there
is no line with orientation α such that the translations
exist, the functions are not defined for α. Note that
for any distinct pairs of indices (i, j) and (i′, j′) with
i ≤ j and i′ ≤ j′, hij and hi′j′ intersect each other
O(1) times. We compute H(α) = min1≤i≤j≤n hij(α)
and L(α) = max1≤i≤j≤n lij(α). Functions H(α) and
L(α) are not defined for α if there are indices i ≤ j such
that hij(α) and lij(α) are not defined.

Lemma 28 There exists a rearrangement of S onto a
line with cost at most δ0 if and only if H(α) ≥ L(α) for
some α.

Proof. Let Q be a rearrangement of S onto `(h, α0)
with cost at most δ0. By definition, hij(α0) ≥ h ≥
lij(α0) for every index pair i ≤ j. Therefore, H(α) ≥
L(α).

If H(α0) ≥ L(α0) for some α0, let h be a height with
H(α0) ≥ h ≥ L(α0). By Lemma 4, there is a rearrange-
ment of S onto `(h, α0) with cost at most δ0. �

The algorithm checks whether there is a certain ori-
entation α satisfying H(α) ≥ L(α). As hij(α) and
hi′j′(α) intersects each other O(1) times, H(α) consists
of O(n2 polylog n) partial functions and can be com-
puted in O(n2 polylog n) time. Similarly, the algorithm
computes L(α) in O(n2 polylog n) time. After com-
puting H(α) and L(α), the algorithm checks whether
H(α) ≥ L(α) holds for each partial intervals, which
takes O(n2 polylog n) time. In total, the algorithm takes
O(n2 polylog n) time.

Parallel decision algorithm The parallel decision
algorithm computes H(α) and L(α) for a given real
number δ0 as follows. Let Hi(α) = minj hij(α) and
Li(α) = maxj lij(α). They are not defined for α if

there are indices i ≤ j such that hij(α) and lij(α) are
not defined. Observe that Hi(α) and Li(α) consist of
O(n polylog n) partial functions. By assigning a pro-
cessor to each index i, it takes O(npolylog n) time to
compute Hi(α) and Li(α). Then using O(n2) proces-
sors, the algorithm computes all the intervals such that
Hi(θ) ≥ Lj(θ) for every index pair i, j. There are O(n)
such intervals for each index pair i, j. The algorithm
sorts the endpoints of the intervals in O(npolylog n)
time using O(n2) processors by a parallel sorting algo-
rithm such as Preparata’s [15] or Valiant’s [17]. The al-
gorithm finds whether there exists an interval of orienta-
tions α such that H(α) ≥ L(α) by checking every sorted
intervals. In total, the algorithm takes O(npolylog n)
time using O(n2) processors.

Parametric search Now we have an O(n2 polylog n)-
time sequential decision algorithm and an
O(n polylog n)-time parallel decision algorithm us-
ing O(n2) processors. By applying parametric
search, we can find an optimal rearrangement of S in
O(n3 polylog n) time. Therefore, Theorem 26 holds.

Weighted version Observe that both decision algo-
rithms also work for the weighted version in same time
bound by setting hij(α) and lij(α) to the maximum and
the minimum height of the line with orientation α, re-
spectively, such that pi and pj can be placed within
distance wj − wi with cost at most δ0 for index pair
i ≤ j. Therefore, Theorem 27 holds.

