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Abstract

Given two compact convex sets P and Q in the plane, we consider the problem of finding a
placement ϕP of P that minimizes the convex hull of ϕP ∪ Q. We study eight versions of the
problem: we consider minimizing either the area or the perimeter of the convex hull; we either allow
ϕP and Q to intersect or we restrict their interiors to remain disjoint; and we either allow reorienting
P or require its orientation to be fixed. In the case without reorientations, we achieve exact near-
linear time algorithms for all versions of the problem. In the case with reorientations, we compute
a (1 + ε)-approximation in time O(ε−1/2 log n + ε−3/2 loga(1/ε)) if the two sets are convex polygons
with n vertices in total, where a ∈ {0, 1, 2} depending on the version of the problem.

1 Introduction

We consider the problem of stacking two flat objects into a box. The objects will lie on top of each
other, and our goal is to design a box that is as small as possible, while restricting it to be convex. This
problem can be modelled as follows: given two planar compact convex figures P and Q, find the rigid
motion ϕ such that the convex hull of ϕP ∪ Q is minimized. Note that considering convex sets only is
no restriction, as the target does not change when we replace a set by its convex hull.

Problems of this flavor arise in various applications, consider for instance the problem of minimizing
the cross section of a wire bundle consisting of two subsets of wires. Depending on the application, we
may want to minimize either the area or the perimeter of the convex hull. We may allow the two figures
to overlap (as in the case where we design a box for two stacked objects), or not (as in the case of the wire
bundle). Finally, we may allow the objects to be reoriented freely, or we may consider their orientation
to be fixed. We study all these eight versions of the problem in this paper.

There has been a fair amount of work on the problem of maximizing the overlap (or, equivalently,
minimizing the symmetric difference) of two shapes in the context of shape matching under translations [6,
9, 18] or rigid motions [4, 5, 8].

Much less is known about the problem of minimizing the convex hull of two shapes. The problem
has been studied only under the restriction that the interiors of the two shapes remain disjoint. Lee
and Woo [13] presented a linear time algorithm to find a translation that minimizes the area of the
convex hull of two convex polygons with n vertices in total. Tang et al. [20] recently gave an O(n3) time
deterministic algorithm to find a rigid motion minimizing this convex hull.

In higher dimensions, Ahn et al. [3] studied the problem of minimizing the volume of the convex hull
of two convex polyhedra under translations when overlap is allowed. Their algorithm returns the optimal
translation in expected time O(nd+1−3/d logd+1 n) for dimension d > 3.

Motivated by applications in the clothing industry, Milenkovic studied the packing of a set of polygons
into another polygon container under translations [17] and rigid motions [15, 16]. For packing k convex n-
gons into a minimum area isothetic rectangle under translation, he gave an O(nk−1 log n) time algorithm
using linear programming techniques. Later, Alt and Hurtado [7] considered the problem of packing
convex polygons into a minimum size rectangle, where the size of a rectangle can either be its area or
its perimeter. When overlap is allowed, they presented efficient algorithms whose running time is close
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to linear or O(n log n) even for an arbitrary number of polygons with n vertices in total. For disjoint
packing of two polygons, they presented algorithms whose running time is close to linear for translations
and O(n3) for rigid motions. This problem is known to be NP-hard for arbitrary numbers of polygons.
Very recently, Egeblad et al. [12] consider the problem of translationally packing polytopes into another
polytope container in arbitrary dimension.

Sugihara et al. [19] considered a disk packing problem of finding the smallest enclosing circle containing
a set of disks (the cross section of a wire bundle) in the plane, and gave a “shake-and-shrink” algorithm
that shakes the disks and shrinks the enclosing circle step-by-step.

Ahn et al. [2] gave an approximation algorithm to find the line ` such that the convex hull of a given
convex set C and a reflected copy of C along ` is minimized. This is a special case of one version of our
problem, but does not generalize to the more general problem.

Our main theoretical result is to show that for any two given convex figures P and Q, the function
ω : R2 → R that maps a vector r to either the area or the perimeter of the convex hull of P + r and Q,
is a convex function. For the perimeter case, we actually prove this result for arbitrarily large families
of convex figures (for the area case, however, the statement is false for more than two figures).

This implies that minimizing either the area or the perimeter of two convex figures without reorien-
tations can be solved numerically by minimizing a convex function. More theoretically, we show that
when the two figures are convex polygons with n vertices in total, the area can be minimized in time
O(n log n), while the perimeter can be minimized in time O(n log2 n).

We then give an ε-approximation algorithm for the problem when reorientations are allowed. More
precisely, we compute a rigid motion ϕapp such that either the area or the perimeter of the convex hull
of ϕappP ∪ Q is at most 1 + ε times the optimally achievable area or perimeter. The running time is
O(ε−1/2T + ε−3/2 loga(1/ε)), where T is the time needed to find a point extreme in a given direction,
or the intersection of a given line with P and Q, and where a = 1 for the area case and a = 2 for the
perimeter case. Our approximation algorithm is simple: it suffices to sample orientations of P , and to
find the optimal translation for each orientation of P using the algorithm developed earlier. The difficulty
is in choosing a suitable set of sampling orientations for P—uniform sampling does not work.

We also briefly revisit the case where P and Q are not allowed to overlap, and give similar approxi-
mation algorithms to find the best rigid motion minimizing area or perimeter of the convex hull under
this restriction.

2 Notation and preliminaries

For a compact set S in the plane, let d(S) and w(S) denote the diameter and width of S (the width is the
minimum distance between two parallel lines enclosing S). Also, let |S| and ||S|| denote the perimeter
and the area of the convex hull of S. Note that d(S) = d(conv(S)), w(S) = w(conv(S)), and (by
definition) |S| = |conv(S)| and ||S|| = ||conv(S)||. For a vector r ∈ R2, let S + r denote the translation
of S by r, that is, S + r = {p+ r | p ∈ S}. The interior of a set S ⊆ R2 is denoted int(S).

For an angle θ, let w(S, θ) be the width of S in direction θ, that is, the length of the orthogonal
projection of S onto a line with slope θ. Clearly we have w(S) = min06θ<π w(S, θ). We will make use of
(a special case of) the Cauchy-Crofton formula [10], which asserts that

|S| =
∫ π

0

w(S, θ)dθ. (1)

Let C ⊂ R2 be a compact convex set. We will need the inequality |C| 6 πd(C) [21, pg. 257, ex.7.17a].
If C ′ is the set of points at distance at most r > 0 from C (in other words, C ′ is the Minkowski sum of
C and a disk of radius r), then [2]

|C ′| = |C|+ 2πr (2)

||C ′|| = ||C||+ r|C|+ πr2. (3)

Following Agarwal et al. [1], we say that a convex set C ′ ⊂ C is an ε-kernel of C if and only if for all
θ ∈ [0, π] we have (1− ε)w(C, θ) 6 w(C ′, θ). By Eq. (1), this immediately implies that

(1− ε)|C| 6 |C ′| 6 |C|. (4)
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There is a constant c2 > 1 such that if C ′ is an ε/c2-kernel of C, then ||C \ C ′|| 6 ε||C|| [1], which
additionally implies

(1− ε)||C|| 6 ||C ′|| 6 ||C||. (5)

Based on Dudley’s constructive proof from 1974 [11], Ahn et al. [2] gave an algorithm that computes
inner and outer approximations to a given convex set C. The algorithm requires only two operations on
the set C, namely (a) given a query direction u ∈ U , find an extreme point in direction u; and (b) given
a line `, find the line segment ` ∩ C. Let TC denote the time needed to answer any of these queries.

Lemma 1. ([2]) Given a planar convex set C and ε > 0, one can construct in time O(TC/
√
ε) a convex

polygon C ′ with O(1/
√
ε) vertices such that C ⊂ C ′ and C is an ε-kernel of C ′. If C is a convex n-gon

whose vertices are given in a sorted array, then we can compute C ′ in time O(log n/
√
ε).

3 Convexity of the target functions

Let k > 2 be an integer, and let Ci, for i = 1, . . . , k, be k compact convex figures in the plane. For a vector
r ∈ R2k, we write r = (r1, . . . , rk), where ri ∈ R2, let Ci(r) := Ci + ri, and let C(r) := conv

(⋃
i Ci(r)

)
.

We can now define two functions ψ, ω : R2k → R, where ψ(r) := |C(r)| and ω(r) := ||C(r)||.
In this section, we show that ψ is a convex function, that is, the volume above the graph of the

function is convex. We also show that ω is a convex function for k = 2, but that this is not necessarily
the case for k > 2.

3.1 Convexity of the perimeter function

Theorem 2. The function ψ : R2k → R with ψ(r) = |C(r)| is convex.

Proof. Since a function R2k → R is convex if any cross section along a line is convex, it suffices to
prove the latter fact. We can express any line in R2k as r(t) = (1 − t)u + tv, where u, v ∈ R2k. We let
Ci(t) := Ci(r(t)) and C(t) := C(r(t))). We will show that the function t 7→ ψ(r(t)) = |C(t)| is convex,
proving the theorem.

By the Cauchy-Crofton formula, we have

|C(t)| =
∫ π

0

w(C(t), θ)dθ.

We will show that for any fixed θ ∈ [0, π], the function t 7→ w(C(t), θ) is convex. Without loss of
generality, we can consider θ = 0, so that w(C(t), θ) is the length of the projection of C(t) onto the
x-axis. Let ai and bi be a leftmost and rightmost point of Ci (that is, a point with the smallest x-
coordinate and a point with the largest x-coordinate). Then ai + ri(t) is a leftmost point of Ci(t), and
bi + ri(t) is a rightmost point of Ci(t). Let αi(t) and βi(t) denote the x-coordinates of ai + ri(t) and
bi + ri(t). Since r(t) is a linear function, so are αi(t) and βi(t). We now observe that

w(C(t), θ) = max
i
βi(t)−min

i
αi(t).

The pointwise maximum of a family of linear functions is a convex function, and so t 7→ maxi βi(t) and
t 7→ −mini αi(t) are both convex. This implies that t 7→ w(C(t), θ) is indeed a convex function.

Convexity of t 7→ w(C(t), θ) means that for any 0 6 θ < π, any t0, t1 ∈ R, and any 0 6 λ 6 1 we have

w
(
C
(
(1− λ)t0 + λt1

)
, θ
)

6 (1− λ) · w(C(t0), θ) + λ · w(C(t1), θ).

Integrating over θ, we get∣∣C((1− λ)t0 + λt1)
∣∣ =

∫ π

0

w
(
C((1− λ)t0 + λt1), θ

)
dθ

6 (1− λ)
∫ π

0

w(C(t0), θ)dθ + λ

∫ π

0

w(C(t1), θ)dθ

= (1− λ)|C(t0)|+ λ|C(t1)|,

which shows that t 7→ |C(t)| is convex and the theorem follows.
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3.2 Convexity of the area function

We now consider the function ω : R2k → R where ω(r) = ||C(r)|| is the area of C(r). This function is
not necessarily convex for k > 3, as the following example shows.

Let C1 = C2 = C3 be a disk of diameter ε > 0 centered at the origin, and consider the two vectors
u = (0, 0, 0, 2, 0, 6) and v = (6, 0, 2, 0, 0, 0). Then ||C(u)|| and ||C(v)|| are both roughly 6ε. However,
for the vector w = 1

2 (u + v) halfway between u and v, we have w = (3, 0, 1, 1, 0, 3), and ||C(w)|| is
roughly 3/2. If ε is chosen small enough, this violates the convexity of r 7→ ||C(r)||.

Perhaps surprisingly, for k = 2 the area function is a convex function.

Theorem 3. Let P and Q be compact convex figures in the plane. Then the function ω : R2 → R with
r 7→ ||(P + r) ∪Q|| is convex. If P and Q are convex polygons, then ω is piecewise linear.

Proof. As in Theorem 2, it suffices to prove convexity along an arbitrary line. Without loss of generality,
we consider horizontal lines. For t ∈ R, let Pt := P + (t, 0), that is, the translation of P by t along the
x-axis, and let Ct := conv(Pt ∪Q). We will show that the function ω : t 7→ ||Ct|| is convex.

We first argue that it is enough to prove the lemma under the assumption that P and Q are convex
polygons. Indeed, assume that the lemma is false for two compact convex figures P and Q. Then there are
t0, t1 ∈ R and 0 < λ < 1 such that ω

(
λt0 +(1−λ)t1

)
> λ ·ω(t0)+(1−λ) ·ω(t1). Let t∗ := λt0 +(1−λ)t1,

let ε := ω(t∗)−
(
λ ·ω(t0) + (1−λ) ·ω(t1)

)
> 0, and let ε′ := ε

2c2ω(t∗) , where c2 > 1 is the constant needed
for Ineq. (5).

We pick convex polygons P ′ ⊂ P and Q′ ⊂ Q to be ε′-kernels of P and Q, and define P ′t := P ′+(t, 0).
Then conv(P ′t∗ ∪ Q′) is an ε′-kernel of Ct∗ , and so (1 − ε

2ω(t∗) )ω(t∗) 6 ||P ′t∗ ∪ Q′|| by (5). This implies
||P ′t∗ ∪ Q′|| > ω(t∗) − ε/2 > λ · ω(t0) + (1 − λ) · ω(t1). On the other hand, P ′t ∪ Q′ ⊂ Ct, and so
||P ′t ∪ Q′|| 6 ω(t) for t = t0, t1. It follows that the function t 7→ ||P ′t ∪ Q′|| is not convex either, and so
in the following we can assume that P and Q are convex polygons.

The vertices of Ct are either vertices of Pt or vertices of Q. Consequently, the boundary of Ct
consists of three types of edges: edges of Pt (type 0 edges), edges of Q (type 2 edges), and type 1 edges
connecting one vertex of Pt with one vertex of Q. As t increases, the polygon Pt moves to the right,
while Q remains stationary. We consider how ||Ct|| changes. As long as the combinatorial structure of Ct
remains the same, the change in ||Ct|| can be expressed as the sum of changes incurred by the individual
edges: moving edges on the right side of Ct add area to Ct, while moving edges on the left side of Ct
remove area from Ct. For a type 0 edge e, the area swept over when t increases by δ is δh(e), where
h(S) = w(S, π/2) denotes the length of the projection of a set S on the y-axis. For a type 1 edge e, the
area swept over is δh(e)/2 (since one endpoint moves by δ, the area swept is a triangle). Type 2 edges
are stationary, and do not contribute to the change in ||Ct||.

It follows that as long as Ct+δ and Ct have the same combinatorial structure, we have

ω(t+ δ)− ω(t) = ||Ct+δ|| − ||Ct|| =
∑
e∈R0

t

δh(e) +
∑
e∈R1

t

δh(e)
2
−
∑
e∈L0

t

δh(e)−
∑
e∈L1

t

δh(e)
2

,

where Rit is the set of right edges of Ct of type i, and Lit is the set of left edges of Ct of type i. Now note
that

∑
h(e) = h(C), when the sum is taken over all left edges or over all right edges. It follows that∑

e∈R1
t

h(e) = h(C)−
∑
e∈R0

t

h(e)−
∑
e∈R2

t

h(e),

∑
e∈L1

t

h(e) = h(C)−
∑
e∈L0

t

h(e)−
∑
e∈L2

t

h(e).

Substituting into the previous equality we obtain

ω(t+ δ)− ω(t) =
δ

2

( ∑
e∈R0

t

h(e)−
∑
e∈R2

t

h(e)−
∑
e∈L0

t

h(e) +
∑
e∈L2

t

h(e)
)
.

The expression in parentheses is constant as long as the combinatorial structure of Ct does not change.
This implies that ω is a piecewise linear function.
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Letting δ → 0, we obtain

ω′(t) =
1
2

( ∑
e∈R0

t

h(e)−
∑
e∈R2

t

h(e)−
∑
e∈L0

t

h(e) +
∑
e∈L2

t

h(e)
)
.

Consider a left edge e of Pt. This edge appears as a type 0 edge of Ct if and only if no vertex of Q
lies on the left of the supporting line `e of e. Since Pt moves horizontally rightwards, there is a unique
edge event for e where the moving `e touches the first vertex ve of the stationary Q. Let t(e) be the
“time” of this event, that is, the value of t such that ve ∈ `e. Clearly, e ∈ L0

t if t < t(e), and e 6∈ L0
t if

t > t(e) (and either can be true at t = t(e)). See Fig. 1. This implies that the function t 7→
∑
e∈L0

t
h(e)

is non-increasing. Similarly, a right edge e of Pt is in R0
t if and only if no vertex of Q lies to the right

of `e. This implies that there is a “time” t(e) such that e 6∈ R0
t if t < t(e) and e ∈ R0

t if t > t(e), and
it follows that t 7→

∑
e∈R0

t
h(e) is non-decreasing. Analogously, we can show that t 7→

∑
e∈L2

t
h(e) is

non-decreasing, while t 7→
∑
e∈R2

t
h(e) is non-increasing. It follows that ω′(t) is non-decreasing, and so

ω(t) is convex, proving the theorem.

Pt

Q

`e

e

ve

t = t(e) t > t(e)

Pt

Q

Figure 1: The unique edge event at time t = t(e) for a left edge e.

4 Minimizing the convex hull under translations

Since the functions ψ and ω (for k = 2) are convex functions, they have a single local minimum. If
the convex figures are polygons, then it is easy to evaluate ψ or ω for any r ∈ R2k, and so numerical
optimization methods can be used to find the unique minimum.

In this section, we study the theoretical complexity of minimizing perimeter or area of the convex
hull for two convex polygons P and Q.

Lemma 4. Let P and Q be convex polygons with n vertices in total, and let ` be a line. Then we can
compute a point r ∈ ` minimizing |(P + r)∪Q| in time O(n log n), and a point minimizing ||(P + r)∪Q||
in time O(n).

Proof. We choose a coordinate-system such that ` is the x-axis, and end up with the setting of the proof
of Theorem 3. The combinatorial structure of Ct = conv(Pt ∪Q) changes only when a vertex of Q lies
on a supporting line of Pt, and vice versa. There are O(n) such values of t called breakpoints, and they
can be computed in linear time: the vertex of Q hitting a line `e first must have a tangent parallel to `e,
and so it suffices to merge the lists of slopes of P and Q. We sort all these values of t in time O(n log n).

For a fixed value of t, we can compute conv(Pt ∪Q) in linear time, since we know the sorted order of
the vertices of P and Q in y-direction. We can therefore perform binary search on the list of breakpoints,
and in O(n log n) time find an interval containing the optimum and at most one breakpoint. For the
area function, the optimum must occur at a breakpoint, and we are done. For the perimeter function, it
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remains to find the optimum between the two breakpoints. This amounts to minimizing a sum of square
roots, and it seems that this has to be done numerically.

For the area function, we can do better than this (at least asymptotically) by using a decimation
approach. The details are similar to the algorithm described by Ahn et al. [2].

Let ω(t) = ||Pt∪Q||. As we saw in Theorem 3, ω′(t) can be expressed as a linear combination of h(e)
over all edges of Pt and Q, and changes only at a breakpoint. Let us define ω−(t) := limε→0 ω

′(t − ε)
and ω+(t) := limε→0 ω

′(t + ε). Our task is then to find a breakpoint t∗ ∈ R such that ω−(t∗) 6 0 and
ω+(t∗) > 0.

At each stage, we maintain an open interval (t0, t1), the values ω+(t0) and ω−(t1), and an unordered
list of all breakpoints occurring in the open interval (t0, t1). We initialize the recursion by letting
(t0, t1) = (−∞,∞). As we observed above, we can compute the unordered list L of all breakpoints
occurring between t0 and t1 in linear time. In a recursive step, we compute a median value t2 for L
and compute ω−(t2) and ω+(t2) by scanning L, which takes time linear in the size of L. If ω−(t2) 6 0
and ω+(t2) > 0, we are done, and return t2 as t∗. If both are negative, we scan L to create a list of
breakpoints occurring strictly between t2 and t1, and recurse on the interval (t2, t1). Otherwise, that is
if both are positive, we similarly recurse on the interval (t0, t2). Since the size of L decreases to half its
previous size in each recursion step, the overall running time of our algorithm is O(n).

We now have all the tools we need to find the optimal placement.

Theorem 5. Let P and Q be convex polygons with n vertices in total. Then we can compute a translation
r ∈ R2 minimizing |(P + r)∪Q| in time O(n log2 n), and a translation minimizing ||(P + r)∪Q|| in time
O(n log n).

Proof. De Berg et al. [9] give an O(n log n) time algorithm to compute the translation r maximizing
||(P + r) ∩ Q||. Their algorithm makes use of a subroutine to find the best translation restricted to a
line, and exploits the fact that the function r 7→ ||(P + r) ∩Q|| is unimodal.

We have established the same property for the functions r 7→ |(P + r)∪Q| and r 7→ ||(P + r)∪Q|| in
Theorems 2 and 3. We have also given a subroutine to compute the optimum along a line in Lemma 4.
We can therefore apply de Berg et al.’s technique to our problem. Their Lemmas 3.4 to 3.7 apply with
minor modifications that we leave to the reader.

5 Minimizing the convex hull under rigid motions

We now consider the problem when arbitrary rigid motions of P are allowed, and give an approximation
algorithm. Let ξ(S) be the target function we wish to minimize, that is, either ξ(S) = |S| or ξ(S) = ||S||.
Let ϕopt be a rigid motion that minimizes the desired target function ξ(ϕopt(S)). For a given ε > 0, our
goal will be to find a rigid motion ϕapp such that ξ(ϕappP ∪Q) 6 (1 + ε) · ξ(ϕoptP ∪Q).

Our algorithm is quite simple: We first generate a set Dε of O(1/ε) orientations of P . For each
orientation, we then compute the optimal translation of the rotated copy of P , using Theorem 5. The
total running time is clearly O((1/ε)n log n) for the area function and O((1/ε)n log2 n) for the perimeter
function, it remains to describe how to find Dε and to prove the approximation bound.

For the perimeter function, we can simply sample orientations uniformly. For the area function, this
only works when P and Q are rather round and “fat,” but the sampling resolution would have to be too
fine when they are long and skinny. Fortunately, in the latter case we can prove that the diameters of P
and Q must be nearly aligned, and it suffices to sample very finely around the orientation that achieves
alignment.

We first show a lower bound on |P ∪ Q| and ||P ∪ Q|| for two convex sets P and Q based on their
diameter and width.

Lemma 6. Let P and Q be convex sets in the plane. Then

|P ∪Q| > 2 max{d(P ), d(Q)}

||P ∪Q|| > 1
2
·max{d(P ), d(Q)} ·max{w(P ), w(Q)}
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Proof. Let pq be a diameter of P , and assume that d(P ) > d(Q). Since pq is contained in conv(P ∪Q),
the first inequality follows.

Let R be a rectangle circumscribed to P with two sides parallel to pq such that P touches all four
sides of R at points p, q, r and s, and let w be the side of R orthogonal to pq.

Clearly, conv(p, q, r, s) is contained in conv(P ∪Q) and consists of two triangles with common base pq.
Since w > w(P ), it has area at least d(P ) ·w(P )/2. Now let p′q′ be a line segment in Q which has length
w(Q) and is orthogonal to pq. Note that there always exists such a segment: in fact, Q contains a
segment of length w(Q) of every direction [14, pg. 12, ex.4(a)]. Then conv(p, q, p′, q′) is contained in
conv(P ∪Q), and it has area at least d(P ) · w(Q)/2. Therefore,

||P ∪Q|| > d(P ) · 1
2
·max{w(P ), w(Q)},

and the second inequality follows.

5.1 Minimizing the perimeter

We now prove that sampling orientations works for the perimeter function.

Lemma 7. Let P and Q be convex sets in the plane, let ε > 0, and let ρ be a rotation of angle δ 6 ε/π
around a point in P . Then |ρP ∪Q| 6 (1 + ε)|P ∪Q|.

Proof. Let S = conv(P ∪Q) and let S′ = conv(ρP ∪Q). We note that any point q in S′ \S is at distance
at most δd(P ) from the boundary of S. Let T denote the set of points that are at distance at most δd(P )
from S. Then we have S′ ⊂ T . Using Eq. (2), we can bound the perimeter of S′ as

|S′| 6 |T | = |S|+ 2πδd(P ) 6 |S|+ 2εd(P ) 6 (1 + ε)|S|,

since by Lemma 6 we have |S| > 2d(P ).

The algorithmic result is the following.

Lemma 8. Let P and Q be convex polygons with n vertices in total, and let ε > 0. Then we can compute
a rigid motion ϕapp such that |ϕappP ∪Q| 6 (1 + ε)|ϕoptP ∪Q| in time O((1/ε)n log2 n).

Proof. We sample orientations at interval ε/π. For each of these, we then compute the translation
minimizing |ϕP ∪ Q| using Theorem 5. We return the rigid motion achieving the minimum perimeter
among the sampled orientations. The approximation bound follows from Lemma 7. Clearly we have
sampled O(1/ε) directions, and the whole procedure takes time O((1/ε)n log2 n).

5.2 Minimizing the area

For the area function, we cannot simply sample uniformly when the two objects are long and skinny. We
now prove that in this case their diameters need to be nearly aligned.

Lemma 9. Let P and Q be convex sets in the plane, let ϕopt be a rigid motion minimizing ||ϕoptP ∪Q||,
and let γ be the smaller angle between two diameters of ϕoptP and Q. Then

sin γ 6
2 ·max{w(P ), w(Q)}

min{d(P ), d(Q)}

Proof. Let pq be a diameter of ϕoptP and let p′q′ be a diameter of Q. Assume that the diameters pq
and p′q′ make an angle γ ∈ [0, π/2], as in Fig. 2. If the two diameters intersect in a point x, then the
convex hull consists of two triangles with common base pq and area

||conv(p, q, p′, q′)|| = 1
2
· d(P ) · (|p′x|+ |xq′|) sin γ =

1
2
· d(P ) · d(Q) · sin γ.

If the two diameters do not intersect, we can always translate one of them until they intersect while
the area function is non-increasing. Since conv(p, q, p′, q′) ⊂ conv(ϕoptP ∪ Q), we have ||ϕoptP ∪ Q|| >
1
2 · d(P ) · d(Q) · sin γ.
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Consider now rectangles R and R′ circumscribed to P and Q, with R having side lengths d(P ) and
w(P ), and R′ having side lengths d(Q) and w(Q). There is a rigid motion ϕ such that ϕR ∪R′ fits in a
rectangle with sides max{d(P ), d(Q)} and max{w(P ), w(Q)}, and so

||ϕoptP ∪Q|| 6 ||ϕP ∪Q|| 6 ||ϕR ∪R′|| 6 max{d(P ), d(Q)} ·max{w(P ), w(Q)}.

Combining the upper and lower bounds for ||ϕoptP ∪Q|| proves the lemma.

γ
p q

p′

q′

x

Figure 2: The convex hull of two diameters has area at least 1
2 · d(P ) · d(Q) · sin γ.

We now prove that sampling orientations works.

Lemma 10. Let P and Q be convex sets in the plane such that P ∩ Q 6= ∅, let ε > 0, and let ρ be a
rotation of angle

δ 6 min
{
ε

8
max{w(P ), w(Q)}
min{d(P ), d(Q)}

,
π

12

}
around a point in P . Then ||ρP ∪Q|| 6 (1 + ε)||P ∪Q||.

Proof. Without loss of generality, we assume that d(P ) 6 d(Q). Let S, S′, and T as in Lemma 7. We
have S′ ⊂ T , and by Eq. (3) the area of T is

||S′|| 6 ||T || = ||S||+ δd(P ) · |Q|+ π(δd(P ))2

6 ||S||+ δd(P ) · πd(Q) + π(δd(P ))2

6 ||S||+ δd(P ) · πd(Q) + πδ2d(P ) · d(Q)

6 ||S||+ δd(P ) · πd(Q) + δ
π2

12
d(P ) · d(Q)

= ||S||+ δd(P ) · d(Q) · (π +
π2

12
)

< ||S||+ 4δd(P ) · d(Q)

6 ||S||+ 4ε
8

d(P ) · d(Q)
min{d(P ), d(Q)}

max{w(P ), w(Q)}

= ||S||+ ε

2
max{d(P ), d(Q)}max{w(P ), w(Q)}

6 (1 + ε)||S||.

(The last inequality follows from Lemma 6.)

We can now state the algorithmic result.

Lemma 11. Let P and Q be convex polygons with n vertices in total, and let ε > 0. Then we can
compute a rigid motion ϕapp such that ||ϕappP ∪Q|| 6 (1 + ε)||ϕoptP ∪Q|| in time O((1/ε)n log n).

Proof. In linear time, we compute width and diameter of both polygons. Let L = max{w(P ),w(Q)}
min{d(P ),d(Q)} . We

sample orientations at interval εL/8, but omitting all directions where the computed diameters make an
angle γ with sin γ > 2L. Clearly we have sampled O(1/ε) directions. For each of these, we then compute
the translation minimizing ||ϕP ∪Q|| using Theorem 5. The whole procedure takes time O((1/ε)n log n),
and the approximation bound follows from Lemmas 9 and 10.
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5.3 Improving the running time

The time bounds in Lemmas 8 and 11 can be improved by a classic idea: we first replace the input
by approximations with O(1/

√
ε) vertices (that is, the complexity of the problem is now independent

of n). We then apply Lemma 8 or Lemma 11 to the approximations. This will also allow us to solve the
problem for more general convex sets (not necessarily polygons).

Theorem 12. Given two convex sets P and Q in the plane and ε > 0, we can compute a rigid motion
ϕapp such that ξ(ϕappP ∪Q) 6 (1+ε) minϕ ξ(ϕP ∪Q), where the minimum is over all rigid motions. The
running time is O((TP +TQ)ε−1/2 +ε−3/2 loga(1/ε)), where a = 1 if ξ(S) = ||S|| and a = 2 if ξ(S) = |S|.

Proof. Let ε′ := ε/(3c2), where c2 > 1 is the constant needed for Ineq. (5). Using Lemma 1, we construct
outer ε′-approximations P ′ and Q′ to P and Q in time O((TP + TQ)ε−1/2). We then apply Lemma 8 or
Lemma 11 to compute a rigid motion ϕapp such that ξ(ϕappP ′ ∪Q′) 6 (1 + ε/3) minϕ ξ(ϕP ′ ∪Q′). This
takes time O((ε−3/2) loga(ε−1/2)), and it remains to prove the approximation bound.

By Lemma 1, P is an ε′-kernel for P ′, and Q is an ε′-kernel for Q′. This implies that conv(ϕoptP ∪Q)
is an ε′-kernel of conv(ϕoptP ′ ∪ Q′), where ϕopt is a rigid motion minimizing ξ(ϕoptP ∪ Q), and so
(1− ε

3 )ξ(ϕoptP ′ ∪Q′) 6 ξ(ϕoptP ∪Q) by (4) and (5). We get

ξ(ϕappP ∪Q) 6 ξ(ϕappP ′ ∪Q′) 6 (1 +
ε

3
) min

ϕ
ξ(ϕP ′ ∪Q′)

6 (1 +
ε

3
)ξ(ϕoptP ′ ∪Q′) 6

1 + ε
3

1− ε
3

ξ(ϕoptP ∪Q)

6 (1 + ε)ξ(ϕoptP ∪Q),

proving the approximation bound.

6 When overlap is not allowed

In this section we briefly consider the problem when the two figures are not allowed to overlap. That
is, we are given two convex polygons P and Q with n vertices in total, and we wish to minimize either
the perimeter or the area of the convex hull under the restriction that the interiors of ϕP and Q remain
disjoint.

For the case of translations only, Lee and Woo [13] presented a linear time algorithm for finding
a translation that minimizes the area of the convex hull. The idea of the algorithm is to “slide” P
around Q, keeping their boundaries in contact, while maintaining the area of the convex hull. Since
there is only a linear number of changes to the combinatorial structure of the convex hull, this can be
done in linear time. While not mentioned in the paper, the same algorithm works for minimizing the
perimeter of the convex hull.

It remains to find the best rigid motion for this problem. One may conjecture that the optimal
solution is obtained when two edges are in contact. This is, however, not always the case (see Fig. 3).
As mentioned earlier, Tang et al. [20] gave an O(n3) time deterministic algorithm for finding a rigid
motion that minimizes the area of the convex hull exactly. In contrast, we present a near-linear time
approximation algorithm for finding a rigid motion that minimizes either the perimeter or the area of
their convex hull.

We proceed very similarly to Section 5. For the area case, we need the following technical lemma.

Lemma 13. Let P and Q be convex sets in the plane, let ϕopt be a rigid motion minimizing ||ϕoptP ∪Q||
while keeping their interiors disjoint, and let γ be the smaller angle between two diameters of ϕoptP and
Q. Then,

sin γ 6
4 ·max{w(P ), w(Q)}

min{d(P ), d(Q)}

Proof. As in Lemma 9, we first argue that |ϕoptP ∪Q| > 1
2 · d(P ) · d(Q) · sin γ (the restriction can only

increase the optimum). We then again consider the rectangles R and R′ (as defined in the proof of
Lemma 9). There is a rigid motion ϕ that aligns them such that ϕR ∪ R′ fits in a rectangle with sides
2 ·max{d(P ), d(Q)} and max{w(P ), w(Q)}, implying the bound.
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b

b′

a
a′

(a) (b)

Figure 3: (a) An example consisting of a long and very thin rectangle and a rhombus touching the
rectangle from below with edge-vertex contact. (b) A configuration with edge-edge contact; we can
always adjust the internal angles of the rhombus and the horizontal length of the rectangle such that
a′ > 2a and b′ > 2b as in the figure. Clearly, the convex hull of the two figures has larger perimeter than
their convex hull in configuration (a), and the grey triangle has larger area than the two grey triangles
in (a). Moreover, it is not difficult to see that no horizontal translation of the rhombus can reduce the
perimeter or the area the convex hull.

Theorem 14. Given two convex sets P and Q in the plane and ε > 0, we can compute in time O((TP +
TQ)ε−1/2 + ε−3/2) a rigid motion ϕapp such that ξ(ϕappP ∪Q) 6 (1 + ε) minϕ ξ(ϕP ∪Q) over all rigid
motions, where either ξ(S) = |S| or ξ(S) = ||S||.

Proof. Let us first assume that P andQ are convex n-gons. We sample O(1/ε) orientations as follows: For
the perimeter case, we sample orientations at interval ε/π. For the area case, we let L = 4·max{w(P ),w(Q)}

min{d(P ),d(Q)} ,
and we sample orientations at interval εL/8, but omitting all orientations where two diameters of P
and Q make an angle γ with sin γ > 4L. In both cases, we have sampled O(1/ε) orientations. For
each sampled orientation, we compute the translation minimizing ξ((P + r) ∪ Q) under the restriction
int(P + r) ∩ int(Q) = ∅ using the O(n) time algorithm of Lee and Woo [13].

This procedure takes time O(n/ε) and results in a rigid motion ϕapp with ξ(ϕappP ∪ Q) 6 (1 +
ε) minϕ ξ(ϕP ∪Q). This follows from Lemmas 7, 10, and 13.

Finally, we improve the running time exactly as in Theorem 12: We construct outer approximations P ′

and Q′ of P and Q in time O((TP + TQ)ε−1/2), and then apply the procedure described above in
time O(ε−1/2/ε) = O(ε−3/2).
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