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Parallel Line Centers with Guaranteed Separation®

Chaeyoon Chung? Taehoon Ahn*

Abstract

Given a set P of n points in the plane and an integer
k > 1, the k-line-center problem asks k slabs whose
union encloses P that minimizes the maximum width of
the k slabs. In this paper, we introduce a new variant
of the k-line-center problem for & > 2, in which the
resulting k lines are parallel and a prescribed separation
between two line centers is guaranteed. More precisely,
we define a measure of separation, namely the gap-ratio
of k parallel slabs, to be the minimum distance between
any two slabs, divided by the width of the smallest slab
enclosing the k slabs. We present the first and efficient
algorithms for the following problems: (1) Given a real
0 < p <1, compute k parallel slabs of minimum width
that cover P with gap-ratio at least p. (2) Compute
k parallel slabs that covers P with maximum possible
gap-ratio. Our algorithms run in O(p~* - knlogn) and
O(pk, -knlogn) time, respectively, where pyay denotes
the maximum possible gap-ratio of any k parallel slabs
that cover P. Both algorithms use O(n) space.

1 Introduction

In many practical situations of geometric facility loca-
tion, one would like to locate two or more facilities of
a certain shape that serve a given set P of input cus-
tomers (e.g., points) in the plane, in such a way that
the interference between two facilities and/or between
two customers served by different facilities is minimized.
Hence, most preferred in this case are mutually disjoint
facilities with separation guaranteed or maximized be-
tween the covering regions of any two facilities. In this
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Figure 1: An example of a 3-slab cover S of 13 points
in P. Here, we have w(S) = w(o1) = w(o3) and ¢(S) =
w(vy1) > p-b(S). Hence, the k-slab S is a minimum-
width k-slab cover of P whose gap-ratio is at least p.

paper, we consider such a variant of the k-line-center
problem in the plane for £ > 2 with separation guar-
anteed or maximized between any two line centers and
between their covering regions. By this goal regarding
separation, it is obvious that the resulting & line cen-
ters are parallel and mutually disjoint. A more precise
description of our problem is given below.

As an input point is assigned to its closest line center
under the Euclidean metric, the covering region of a line
center forms a slab. So the problem is equivalent to find-
ing k parallel and mutually disjoint slabs o1,09,...,0%
such that their union encloses P and o; N P # () for
each i =1,..., k. We call a sequence S of such k paral-
lel slabs a k-slab cover of P, or just a k-slab regardless
of the relation to P. For each slab o, its width w(o)
is the orthogonal distance between its two bounding
lines. Consider a k-slab S = (o1,...,0%). (See Fig-
ure 1.) The width of S, denoted by w(S), is defined
to be max{w(o1),...,w(ox)}, and the breadth of S, de-
noted by b(S), is the orthogonal distance between the
two outermost bounding lines of S. The region between
two consecutive slabs ¢; and ;11 in S is called a gap,
denoted by ;. Each gap ; also forms a slab, so w(~y;)
denotes its width. The gap-width of S is defined to be
the minimum of w(y;) over ¢ = 1,...,k — 1, denoted
by ¢(S). Our measure of separation in the problem is
then defined to be the ratio of the gap-width over the
breadth, namely, the gap-ratio of S is p(S) := g(S)/b(S).

The goal of the problem is thus to find an optimal k-
slab cover of P regarding two objective criteria: width
and gap-ratio. More precisely, we consider the following
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problems for given k£ > 2 and a set P of n points:

1. For a given real 0 < p < 1, find a minimum-width
k-slab cover of P whose gap-ratio is at least p.

2. Find a maximum-gap-ratio k-slab cover of P.

Related work. The k-line-center problem is equiva-
lent to finding k slabs, being not necessarily parallel, of
min-max width whose union encloses the input points.
The 1-line-center problem can be solved in O(nlogn)
time by computing the center line of a minimum-width
slab of the points [9,11]. For the 2-line-center prob-
lem, Agarwal and Sharir [3] gave an O(n?log® n)-time
algorithm, and Jaromczyk and Kowaluk [12] improved
it to O(n?log®n) time. Agarwal et al. [1] gave an
(1 + e)-approximation algorithm for the problem that
runs in O(n(logn+ e 2log(1/e)) +e~7/?log(1/e)) time.
When k is part of input, the k-line-center problem is
NP-complete because it is known to be NP-complete to
decide whether n points can be covered by k lines [13].
Agarwal et al. [2] gave an (1 4 ¢)-approximation algo-
rithm that runs in O(nlogn) time with the constant
factor depending on k and e.

If the line centers are constrained to be parallel in
the k-line center problem, the problem is equivalent to
finding a minimum-width k-slab cover in our sense. In
this case, Bae [5] presented an O(n?)-time algorithm for
the case of k = 2. No non-trivial algorithm is known for
each k > 3, to the best of our knowledge.

Our results and approach. We present efficient algo-
rithms for the above two problems. Our algorithms run
in O(p~* - knlogn) and O(p .k, - knlogn) time, respec-
tively, where ppax denotes the maximum possible gap-
ratio of any k parallel slabs that cover P. Both algo-
rithms use O(n) space.

We first consider Problem 1 of computing a minimum-
width k-slab cover of P whose gap-ratio is at least a
given parameter p € (0,1]. To tackle the problem, we
introduce a concept of a separator of a k-slab, defined to
be a sequence of k—1 points each of which lies in its dis-
tinct gap. We describe efficient algorithms to compute
an optimal k-slab cover that respects a fixed separator
in Section 3. Then, in Section 4, we show how to solve
Problem 1 by testing O(1/p*) candidate separators. In
Section 5, we show that the algorithms in Sections 3 and
4 are helpful enough to achieve an efficient algorithm for
Problem 2.

2 Preliminaries

The line segment connecting two points p and ¢ is denote
by pg and its length by |pg|. The orientation of a line
£ in the plane is the angle swept from a vertical line in
counterclockwise direction to £. Hence, the orientation

of each line falls in the range 6 € [0, 7). The orientation
of a linear object, including line segments, slabs, and
k-slabs, is that of a line parallel to it.

For any two points p,q and orientation § € [0,7),
define dy(p,q) to be the orthogonal distance between
two lines in orientation # through p and ¢g. It can be
written dg(p, q) = |pq| - |sin(@ — 6,4)|, where 6, is the
orientation of pq. Thus, dy(p,q) for fixed p and ¢ is a
sinusoidal function in 6. A function is called sinusoidal
if it is of the form a sin(6+b) for some constants a, b € R.

Consider any non-vertical k-slab S = (o1,...,0%)
such that o; lies above ;41 and its i-th gap ~; lies be-
tween o; and 0,41 fori =1,...,k—1. Wecall S a (k, p)-
slab if its gap-ratio p(S) > p for a constant 0 < p < 1.
Let R=(r1,...,7x_1) be a sequence of k — 1 points on
a common line in the order along the line. If it holds
r; €y foreachi=1,...,k— 1, we call R a separator
of S and say that the k-slab S respects the separator R.

3 (k,p)-Slabs Respecting a Given Separator

In this section, we present two algorithms that compute
a minimum-width (k, p)-slab cover S* of P respecting a
given separator R. Since the k slabs in a k-slab cover
of P are mutually disjoint and each of them encloses
at least one point of P, we can assume that 0 < p <
1/(k—1). There is no k-slab cover of P for p > 1/(k—1).

Let R=(r1,...,7x—1) be a given separator. Without
loss of generality, we assume that the points r1,...,7k_1
in R lie on a common vertical line in this order along it
downwards. For each orientation 6 € [0, 7), let £;(6) be
the line in orientation 6 through r; fori=1,... k — 1.
Then, these k—1 lines partition P into k disjoint subsets
Py(0), ..., P(0) such that P;(0) consists of all points in
P lying on or above ¢1(0), P;(0) for 1 < i < k—1 consists
all points in P lying on or above ¢;(6) and below ¢;_1(8),
and Py (6) consists of the rest that lies below £,_1(0).

For ¢ = 1,...,k, let 0;(6) be the minimum-width
slab in orientation 6 that encloses P;(0). Let S(#) :=
(01(0),...,0k(0)) be the k-slab cover of P consisting
of these k parallel slabs. Let 71(6),...,vk—1(0) be the
gaps of S(). Note that S(f) respects the given separa-
tor R by definition. Thus, our goal is to find an optimal
orientation 6* € (0, 7) that minimizes the width of S(9)
for all # such that the gap-ratio of S() is at least the
given threshold p.

By an abuse of notations, we let w;(0) = w(o;(6)) for
i =1,...,k and ¢;(0) = w(;(9)) for i = 1,....k —
1. Also, we let w(8) = w(S(09)), g(@) = g(5(8)),
b(#) = b(S(9)), and p(d) = p(S(F)). By definition,
note that w(d) = maxw;(0), g(#) = ming;(0), and
p(0) = g(6)/b(0).

For each § € (0,7) and 1 < i < k, we denote by ¢;" (6)
and ¢; (6) the two points of P;(#) such that every point
of P;(#) lies in between the two lines ¢* and ¢~ in orien-
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tation @ passing through ¢;"(6) and ¢; (8), respectively,
and £* lies above £~. We call ¢;" (f) and g; () the ez-
treme points of P;(#). Observe that the i-th slab o;(8)
is determined by the two lines in orientation 6 through
q; () and g; (), and the i-th gap ;(0) by the two lines
in orientation # through g¢; () and g¢;\;(#). This im-
plies that their widths w;(0) and g;(0) are sinusoidal
functions over a subdomain in which g¢;" (9), ¢; (¢), and
g1 () remain the same [5].

Note that if P;() consists of a single point p, we have
q; (0) = q; (0) = p and w;(#) = 0.

If P,(0) =0, ¢/ () and g; () are not defined. Since
the é-th slab o; contains no point of P, the k-slab S(6)
is not defined. Thus, in this case, we set w;() = 0 and
gi—1(0) = g;(0) = 0 so that g(0) = p(f) = 0, and thus
our algorithms filter out such orientations ¢ € [0,7) in
searching for an optimal (k, p)-slab cover of P.

3.1 First algorithm using O(kn) space

In the following lemma, we show that each of these
width functions is indeed piecewise sinusoidal and can
be specified in an efficient way. This can be done by ap-
plying a geometric dualization [8, Chapter 8], the Zone
Theorem [7] in the arrangement of lines, and efficient
algorithms to compute the zone of a line in the arrange-
ment [4,15].

Lemma 1 Each of the functions wq,...,wy,
Jis---,9k—1, and b is piecewise sinusoidal with
O(n) breakpoints over the domain [0, 7), and an explicit
description of each can be computed in O(nlogn) time.

The proof of Lemma 1 can be found in the full version.

By Lemma 1, we can also specify the functions w and
g. Recall that w is the upper envelope of the w;’s and
g is the lower envelope of the g;’s. Hence, we observe
that w and g are piecewise sinusoidal with O(kn) break-
points, and can be computed explicitly in O(knlogk)
time by a merge-sort-like recursive merging on k (or
k — 1) functions of O(n) complexity. In conclusion we
have the following algorithm.

Lemma 2 Given P, k>2,0< p <1, and a separator
R as defined above, a minimum-width (k,p)-slab cover
of P respecting R can be computed in O(knlogn) time
and O(kn) space, if exists.

Proof. Here, we describe our algorithm. First, we
compute the full descriptions of functions w, g, and
b. For functions w and g, we apply Lemma 1 to ob-
tain the full descriptions of wy,...,wg and g1,...,9k_1
in O(knlogn) time. Then, we recursively compute
the upper envelope of two upper envelopes: one for
Wi, ..., W2 and the other for w241, .., wy. This
can be done in time linear to the complexity of the two
upper envelopes, which is O(kn) time, because any two

sinusoidal curves cross O(1) times in any subdomain of
(0, 7). Since the recursion depth is bounded by O(log k),
we can compute the full description of w in O(knlog k)
time. Computing g can be done analogously. Note that
functions w and g are piecewise sinusoidal with O(kn)
breakpoints, and function b is piecewise sinusoidal with
O(n) breakpoints.

Next, we specify the intervals of p-valid orientations.
We call an orientation 6 € (0, 7) p-valid if the gap-ratio
p(0) of S(0) is at least p. We can specify the intervals of
p-valid orientations by solving equation g(6) = p - b(9).
As both functions g and b are piecewise sinusoidal, we
can find all the zeros of the equation in O(kn) time, and
these zeros are endpoints of the p-valid intervals. Note
that the number of p-valid intervals is also bounded by
O(kn) since any two sinusoidal curves cross O(1) times
in any subdomain of (0, 7). At this stage, if there is no
p-valid orientation, we report that there is no (k, p)-slab
cover of P respecting R.

Finally, for each p-valid interval I, we minimize the
width w(#) of S(#) over § € I. Since function w is
piecewise sinusoidal with O(kn) breakpoints and there
are O(kn) such intervals, we can find an optimal orien-
tation 6* that minimizes w over all p-valid orientations
in total O(kn) time.

Hence, the total running time is bounded by
O(knlogn). It is not difficult to see that the space spent
during the execution of the algorithm is O(kn). O

3.2 Reducing the space usage

In the following, we show how to reduce the space com-
plexity of Lemma 2 to O(n). This improved algorithm
runs in an angular sweeping fashion by handling events
and updating necessary invariants related to S(6) as 6
increases from 0 to .

Data structures, variables, and invariants. At any
moment 6 € [0,7) during the execution of our algo-
rithm, we maintain the following:

e A fully dynamic structure CH; foreachi =1,... k.
CH; stores the convex hull of P;() and supports an
extreme point query in a given direction, a tan-
gent line query through a given point, a neigh-
bor query, and an insertion/deletion in amortized
O(logn) time using O(n) space. Such a data struc-
ture is known by Brodal and Jacob [6].

o 2k lists Wy, ..., Wy, Gy,...,Gi_1, and B. The list
W; stores sinusoidal functions with domain such
that its tail stores the current sinusoidal form of
function w; and its predecessors store some previ-
ous sinusoidal pieces of w; in the order. Similarly,
G; stores sinusoidal pieces of g;, and B stores those
of b. These 2k lists will be maintained so that the
total number of elements does not exceed 5n.
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Figure 2: The convex hulls of P;(0), P»(6), and Ps(9),
respectively, are depicted by dashed lines, and the ex-
treme points for each are shown as black dots. (b) A
slab event occurs when a side pps of the convex hull of
P, () is parallel to the rotating lines. (¢) A cross event
occurs when /5 touches a point ps.

e The two extreme points ¢ = ¢ (0) and ¢ =
q; (8) of Py(9) for each i = 1,... k. If P;(9) = 0,
these two variables are set to nil.

Events. Our events correspond to changes of the ex-
treme points qi+ and g; fori=1,..., k. We distinguish
two types of events:

e A slab event occurs when two or more points of
P are contained in a boundary line of slab ¢;(6) of
S(#) for some i. Each slab event is associated with a
tuple (¢, p*, p~, 1), where ¢ is the orientation when
the event occurs and (p*,p~) is the new pair of
extreme points of P;(6) right after § = ¢.

e A cross event occurs when a point in P lies on ¢;(0)
for some i. Each cross event is associated with a
tuple (¢, p, i), where ¢ is the orientation at which
the event occurs and the line ¢;() hits p at § = ¢.

Initialization. For the initialization, our algorithm sets
6 = 0 and computes all the above data structures and
variables accordingly. Here, we extend the function
dy(p,q) in such a way that dy(p,q) = 0 when either
p or q is nil. Recall that the points ri,...,7x—1 in
the given separator R lie on a vertical line, so all the
lines ¢1(0),...,¢,_1(0) coincide with the same verti-
cal line. Hence, P;(0) consists of those in P lying on
the right side and Py (0) the rest of those in P, while
P,(0) = -+ = P,_1(0) = 0. For each ¢ = 1,...,k,
we insert the points in P;(0) into CH; after initializing
CH; to be empty, and specify the pair of extreme points
(¢f,q;) of P;(0). We initialize the lists Wy,..., Wy,
Gy,...,Gi_1, and B as empty lists. For each i =
1,...,k, we append a node with (dg(q;",q; ),[0,7)) to
W;. For eachi=1,...,k — 1, and append a node with

(do(q; ,q;11),[0,m)) to G;. And, append a node with
(de(era q;j)7 [0’ 77)) to B.

Additionally, we need a priority queue Q, called the
event queue, which will store at most O(k) events which
will occur, prioritized by their occurring orientations.
Since only P;(0) and P (0) can be non-empty, we create
next slab events and cross events for P;(0) and P (0)
by tangent line queries and neighbor queries to CH; and
CHy, and insert them into Q.

Main loop. In the main loop of our algorithm, un-
til the event queue Q becomes empty, we extract the
next event from Q after the current orientation 6, han-
dle the event, and evaluate partial width functions to
compute an optimal solution. The last evaluation task
is performed by procedure EVALUATE, which will be de-
scribed later.

Let e be the event extracted from Q, and ¢ be the
orientation of e. We handle e according to its type:

e Suppose e is a slab event associated with

(¢,p*,p™,i). Then the pair of extreme points
(g, q;) of P;(#) has to change to (p*,p~) after
¢. So we set qf to p™ and ¢; to p.
Next, we update W;. Let (f,[¢o, 7)) be the tail of
W;. We modify it to (f, [¢o, ¢)) and append a new
node (dg(p™,p~),[¢, 7)) to the tail of W;. Simi-
larly, we update G;_1 and G; if 1 < i < k: Modify
the right endpoint of the domain of the function at
the tail of G;_1 (and also of G;) to ¢, and append a
new node (dg(g;_1,p"), [¢, 7)) to G;—1 and another
(dg(p*,qlt_l), [0, 7)) to G;. If either i = 1 or i = k,
we also modify B. If i = 1, we update G; as done
above, modify the right endpoint of the domain of
the function at the tail of B to ¢, and append a new
node (dg(p™,q; ), [¢, 7)) to B. If i = k, we update
Gg as done above, modify the right endpoint of the
domain of the function at the tail of B to ¢, and
append a new node (dg(q;",p~), [#,7)) to B.

Finally, we create the next possible slab event e’
for P;(#) by finding the next extreme pair (g7, q7)
of P;(#) as 0 increases from ¢. This can be done
by two neighbor queries to the convex hull CH;. To
verify that this pair (¢*, ¢~ ) indeed make the cor-
responding slab event occur at § = ¢’, we check
the orientations of the tangents from r; and r;_; to
CH; by tangent line queries. Only if ¢’ is not big-
ger than these orientations of the tangents, the slab
event for (¢, q™) occurs at ¢’. In this case, we in-
sert the slab event at ¢’ associated with (g7, ¢ ,1%).

e Suppose e is a cross event associated with (¢, p, 7).
In this case, p is about to cross line ¢;(¢). We
first update CH; and CH;;1 by an insertion and a
deletion of p. We then update ¢;” and q;fH correctly
by extreme point queries to CH; and CH,; 1.
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Next, we update the function lists W;, W, 1, and
G;. TFor each of these list, if (f,[po,7)) is its
tail, we modify it to (f, [¢o,®)). Also, we append
(dO(Q;’_’ Qi_)7 [d)»ﬂ-)) to Wi7 (dO(qgi:i-lv Qi_—i-l)v [¢77T)> to
Wi+17 and (d9(Qi_7q1T:-1)7 [¢77T)) to G;.

Finally, we create the next cross event for ¢;(0) by
tangent line queries to CH; and CH;; and insert
them into Q. Also, we create next slab events for
P;(6) and for P;11(6) with the updated extreme
points, and insert each into Q after verification as
described in handling a slab event.

After handling event e as above, we set 6 to ¢. If the
event queue Q becomes empty, we set 6 to 7. Finally in
the main loop, we call procedure EVALUATE only if the
number of handled events is divisible by n or the event
queue Q becomes empty.

Procedure EVALUATE. For each L € {Wy,..., Wy,
Gi,...,Gr_1,B}, let (f,[¢o, 7)) be the tail of L. If
@0 < 0, we modify the tail to (f,[po,0)) and append
a new node (f, [0, 7)) to the tail of L.

Observe that by construction the left endpoint of
the domain of the function stored at the head of L is
equal to some 0y < 6 for every list L, and the union
of the domains of all nodes except the tail is exactly
[00,0). Therefore, for each i = 1,..., k, the partial func-
tions stored at the nodes of W;, except its tail, form
the function w; restricted to domain [0y, 0); for each
1 =1,...,k — 1, those of G;, except its tail, form the
function g; restricted to [0, #); those of B, except its
tail, form the function b restricted to [6p, 6).

We compute the upper envelope w of w;’s restricted
in domain [fy, ) and also the lower envelope g of g;’s
restricted in domain [0, 8) as done in Lemma 2. Then,
we consider the p-valid intervals in [fy, ) and maximize
w in each p-valid interval. This way, we compute the
minimum possible width of (k, p)-slab covers of P in the
sub-domain [0y, 6).

Finally, we delete all the nodes except the tail from
each of the lists Wy, ..., Wy, Gq,...,Gg_1,B.

Analysis. The initialization step can be done in
O(nlogn) time. The main loop, except the call
of procedure EVALUATE takes O(logn) time per
event. The number of handled events is bounded
by O(kn) by Lemma 1 since each event corresponds
to one breakpoint of at most three of the functions
Wiy .oy Why g1y - - -5 gk—1, 0. Thus, the total time for han-
dling events is bounded by O(knlogn). Since proce-
dure EVALUATE is called every n events and at most
three nodes are appended to the lists of functions for
each event, the total number of nodes stored in the lists
does not exceed 2k +3n < 5n at each call of EVALUATE.
Hence, the time spent for a call of EVALUATE is bounded

by O(nlogk) and the total time spend for EVALUATE is
O(knlogk) since the number of calls is O(k).

The structures CHy,...,CHg use O(n) space in to-
tal [6]. The number of events stored in Q is bounded
by O(k) at any time. The total number of nodes stored
in the function lists Wy, ..., Wy, Gq,...,Gg_1, and B
is bounded by 5n as analyzed above. Hence, the total
space complexity is bounded by O(n).

We finally conclude the following theorem.

Theorem 3 Given a set P of n points, an integer
k > 2, a real number 0 < p < 1, and a separator R, a
minimum-width (k, p)-slab cover of P respecting R can
be computed in O(knlogn) time and O(n) space, if ex-
ists. Otherwise, it is reported in the same time bound
that there is no (k, p)-slab cover of P that respects R.

4 Computing a Minimum-Width (k, p)-Slab Cover

In this section, we show how to compute a minimum-
width (k, p)-slab cover of P in Problem 1. Recall that
a real p is given, and it holds that 0 < p < 1/(k —
1); otherwise, we just report that there is no (k, p)-slab
cover of P.

The directional width of P in orientation 6 € [0, ) is
the width of the smallest slab enclosing P in orientation
6, denoted by dp(P) := max,qcpdo(p,q). A subset
K C P is called an e-coreset for the directional width
of P if dg(K) > (1 — €)dy(P) for any orientation 6.

Our algorithm starts by computing a (p/2)-coreset
K C P for the directional width of P. Then, for each
antipodal pair (p, ) of the convex hull of K, we generate
candidate separators from the segment pg and apply the
algorithm described in Theorem 3. In the following,
we mainly focus on the correctness of our algorithm by
proving that any (k, p)-slab cover of P indeed respects
one of our generated separators.

4.1 Candidate separators from a coreset

Let K C P be a (p/2)-coreset K C P for the directional
width of P.

Lemma 4 For any (k, p)-slab cover S = (o, ...
P, it holds that K Noy # 0 and K Noy # 0.

,0k) of

Proof. Suppose for a contradiction that there exists a
(k, p)-slab cover S’ = (a1, ...,0}) with gaps v{,...,7e_;
such that K No} = 0 or K Noj, = 0. Without loss of
generality, we assume that K No} = 0. Let 6’ denote
the orientation of S'. We then have

do/(K) > (1= p/2)b(S")

on one hand, since K is a (p/2)-coreset of P and b(S') =
dg/(P). On the other hand, the assumption that K N
o} = 0 implies that

do (K) < b(S') — (w(o}) +w(1))-
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Plugging these two inequalities, we have
9(8") S w(n) < p/2-b(S") —w(oy) < p-b(S),
and thus p(S') = g(S')/b(S’) < p, a contradiction. O

Furthermore, in Lemma 4, we can pick two points
p € KNoy and ¢ € K N oy such that (p,q) forms an
antipodal pair of the convex hull of K.

Corollary 5 For any (k, p)-slab cover S= (o1, ...,0%)
of P, there is an antipodal pair (p,q) of K such that
p € oy and q € 0.

For any two points p, ¢ in the plane, let R, be the
set of [1/p] points p; € pg such that the distance from
p to p; is exactly j - [pal/([1/p] +1) for 1 < j < [1/p].

Lemma 6 For any (k, p)-slab cover S = (o1,...,0%) of
P, let p and q be any two points such thatp € o1 and q €
ok. Then, each gap of S contains at least one point in

R,q. Therefore, there is a separator R = (r1,...,rg—1)
of S such that r; € Rpq for all1 <i <k —1.
Proof. Let 6 be the orientation of S and ~1,...,vk—1

be the gaps of S. Suppose for a contradiction that ~; N
Ry, = 0 for some i with 1 <14 < k — 1. Then, its width
w(7y;) is small in the sense that

d0(p7 q)

[1/p] +1

Since p and ¢ are contained in the k-slab cover S, we
also have dy(p, ¢) < b(S), which implies that

w(vy;) < < p-do(p,q)-

g(S) < w(yi) < p-b(S),

a contradiction to the assumption that p(S) > p. O

4.2 Algorithm

Now, we are ready to describe our algorithm. Our al-
gorithm first computes a (p/2)-coreset K C P of size
O(1/p) for the directional width of P in O(n) time [10,
Chapter 20]. Then, it computes all antipodal pairs
of the convex hull of K by using the rotating caliper
method [14] after computing the convex hull of K. Fi-
nally, for each of these antipodal pair (p, q), it generates
all possible (k — 1)-combinations from the set R,q, as
candidate separators, and computes a minimum-width
(k, p)-slab cover of P by applying Theorem 3.

The correctness of our algorithm is guaranteed by the
above discussion through Lemmas 4 and 6. Since K is a
subset of P and |K| = O(1/p), the number of antipodal
pairs is also bounded by O(1/p). Hence, the number of
generated candidate separators is bounded by O(1/p").
The following theorem summarizes the result.

Theorem 7 Given a set P of n points in the plane,
an integer k > 2, and a real 0 < p < 1, a minimum-
width (k, p)-slab cover of P can be computed in O(p~" -
knlogn) time and O(n) space, if exists. Otherwise, it is
reported in the same time bound that there is no (k, p)-
slab cover of P.

5 Computing a Maximum-Gap-Ratio k-Slab Cover

In this section, we present an algorithm computing a
maximum-gap-ratio k-slab cover of P in Problem 2. Let
Pmax b€ the maximum possible real number such that
there exists a (k, pmax)-slab cover of P.

Observe that procedure EVALUATE in the algorithm
of Theorem 3 can be easily modified for maximizing
the gap-ratio, instead of minimizing the width. This is
possible because procedure EVALUATE indeed specifies
all necessary functions g(6) and b(6) explicitly. With
this modified version of procedure EVALUATE, we have
the following corollary of Theorem 7.

Corollary 8 Given a set P of n points in the plane, an
integer k > 2, and a real 0 < p <1, a k-slab cover of P
with mazimum possible gap-ratio pmax can be computed
in O(p~*knlogn) time and O(n) space, if p < Pmax-
Otherwise, it is reported in the same time bound that
there is no (k, p)-slab cover of P.

Thus, what remains is to find a value p with 0 < p <
Pmax, Which is big enough. For any integer ¢ > 0, let
pi = 27%* We then search for the integer ¢ such that
Pt—1 > Pmax = pt- This can be done by running the
algorithm in Corollary 8 with p = p; for i = 0,1,...
in this order until it first outputs a k-slab cover of P.
Then, the resulting k-slab cover of P indeed the one
with maximum possible gap-ratio by Corollary 8.

In order to analyze the running time, observe that
the time spent by the t applications of Corollary 8 is
bounded by

Z O(p; " - knlogn)

since p; ¥ = 2!, In addition, we have p;* < 2p k.

since py—1 > Pmax > pP¢- This implies that the time
complexity is bounded by O(p;k, - knlogn).

Theorem 9 Given a set P of n points and an integer
k > 2, a maximum-gap-ratio k-slab cover of P can be
computed in O(prk, - knlogn) time and O(n) space,
where pmax 1S the mazximum possible gap-ratio of a k-
slab cover of P.
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