
Maintaining the Staircase While Rotating Axes and Its

Applications to Deciding Optimal Orientations∗

Sang Won Bae† Chunseok Lee† Hee-Kap Ahn‡ Sunghee Choi†

Kyung-Yong Chwa†

Abstract

We study two non-convex enclosing shapes with the minimum area; the L-shape and the
quadrant hull. Given a set of n points in the plane, find an L-shape enclosing the points or
a quadrant hull of the point set with minimum area over all orientations. We show that the
minimum enclosing shapes for fixed orientations change combinatorially at most O(n) times
while rotating the coordinate system. Based on this, we propose efficient algorithms that
compute both shapes with the minimum area over all orientations. The algorithms provide
an efficient way of maintaining the set of extremal points, or the staircase, while rotating the
coordinate system, and compute both minimum enclosing shapes in O(n2) time and O(n)
space. We also show that the time complexity of maintaining the staircase can be improved
if we use more space.

1 Introduction

Given a set of geometric objects in the plane, there has been a fair amount of work on the smallest
enclosing shapes, such as the convex hull, the smallest enclosing disk and square or the minimum
area enclosing rectangle of the objects [2, 10, 11, 12].

In many cases, the enclosing shape is invariant to orientation, that is, the shape is not dependent
to the orientation of the coordinate system. Therefore, the enclosing shape for any fixed orientation
is already the optimal enclosing shape over all orientations: for example, the smallest enclosing
circle and the convex hull. If, however, this is not the case, that is, if the enclosing shape for
some fixed orientation changes over different orientations, it becomes more difficult to compute
the optimal orientation and an optimal enclosing shape over all orientations: for example, the
minimum enclosing rectangle of points in the plane.

Given a set P of points in the plane, we consider two enclosing shapes which are non-convex:
the L-shape and the quadrant hull. For a fixed orientation, the L-shape can be defined as R \R′,
where R and R′ are axis-aligned rectangles sharing their upper right corner. Thus, the minimum
area enclosing L-shape L(P) of P can be found by taking R as the minimum area enclosing
rectangle of P and R′ as the largest empty rectangle of R sharing its upper right corner with that
of R.

The quadrant hull QH(P) of P can be defined as follows. For a fixed orientation, a quadrant
is the intersection of two half-planes whose supporting lines are axis-aligned and make the right
angle. We call a quadrant free with respect to P if its interior contains no point in P . Then, the
quadrant hull QH(P) of P is

QH(P) := R2 −
⋃

Q quadrant free to P

Q.

∗This work was supported by the Korea Research Foundation Grant funded by the Korean Government
(MOEHRD, Basic Research Promotion Fund) (KRF-2007-331-D00372) and by the Brain Korea 21 Project.

†Division of Computer Science, Korea Advanced Institute of Science and Technology, Korea.
Email: {swbae,stonecold,sunghee,kychwa}@tclab.kaist.ac.kr

‡Department of Computer Science and Engineering, POSTECH, Pohang, Korea. Email: heekap@postech.ac.kr

1

The quadrant hull QH(P) is also known as orthogonal convex hull, because any horizontal or
vertical line intersects the hull in at most one connected component. For a fixed orientation the
quadrant hull can be constructed in time O(n log n) [7, 8, 9], or faster using integer searching data
structures for points with integer coordinates [3]. Matoušek and Plecháč [6] studied more general
concept of convexity, namely D-convex sets and functional D-convex hulls, which are defined by
a set D of vectors in Rd. According to the definition of D-convex hulls, the quadrant hull QH(P)
of P is the D-convex hull of P where D = {(0, 1), (0,−1), (1, 0), (−1, 0)}.

In this paper, we present efficient algorithms computing a minimum area L-shape and a min-
imum area quadrant hull of n points in the plane over all orientations. In doing so, we reveal
relations between both enclosing shapes and extremal points. We call a point p in P extremal
if there is no such point q ∈ P that qx > px and qy > py, where px and py are the x- and y-
coordinates of p in a specific coordinate system.1 We can define a linear order of extremal points,
for instance, the order of non-decreasing x-coordinates, and we can build a staircase from these
ordered points in a natural way. Figure 1 (a) shows a staircase of extremal points sorted in the
order of non-decreasing x-coordinates. Observe that such a staircase can also be described by a
sequence of free quadrants supporting two consecutive extremal points.

(a) (b)

Figure 1: The minimum enclosing L-shape and the quadrant hull of the same set of points in a
fixed orientation.

A minimum enclosing L-shape for a fixed orientation can be obtained by computing the stair-
case in the upward and the rightward directions, and after that by picking the best one among
the pairs of consecutive points which describe the staircase as in Figure 1(a). On the other hand,
the quadrant hull QH(P) can be described by four staircases as in Figure 1(b). In either case,
staircases can be computed in O(n log n) time, and they allow us in linear time to compute both
minimum-area enclosing shapes for a fixed orientation. Therefore, if we could maintain the stair-
cases efficiently while we rotate the coordinate system, it would be helpful to use them in finding
an optimal orientation for both enclosing shapes.

Following this motivation, we consider the problem of maintaining the staircase over all orien-
tations in Section 2. We first present a simple, quadratic-time algorithm and then a subquadratic
time solution with a time/space trade-off. Sections 3 and 4 are devoted to explaining the algo-
rithms for optimal orientations for both enclosing shapes, which implicitly maintain the staircase
and run in quadratic time. Finally, we conclude this paper in Section 5.

2 Maintaining the Staircase

Here we rotate our coordinate system. We shall denote by orientation θ the coordinate system
with axes rotated by θ around the origin in counter-clockwise direction. Let P be a set of n
points. We denote by Xθ(P) the set of extremal points of P in orientation θ. Let ≺θ be the order
of increasing x-coordinate on P in orientation θ. If two points have the same x-coordinate, the one
with higher y-coordinate comes ahead of the other in ≺θ. For Xθ(P) = {p1, · · · , pk} ⊂ P , where
the indices are given in order ≺θ, we draw two axis-parallel rays until both meet; one downwards
from pi and the other leftwards from pi+1. Then we get a step sθ(pi, pi+1) between pi and pi+1

1In this paper, we deal only with orthogonal coordinate systems where two axes make the right angle.

2

with 1 ≤ i < k and we denote such a sequence of steps by the staircase Sθ(P) of P in orientation
θ. Observe that each quadrant obtained by extending a step is free to P .

Our goal in this section is to maintain Xθ(P) and Sθ(P) while θ increases from 0 to 2π. Once
the points in Xθ(P) are given in order ≺θ, we can easily build Sθ(P) from Xθ(P). Therefore,
we would like to efficiently update Xθ(P) to obtain Xθ+ε(P) for sufficiently small positive ε. To
achieve our goal, we focus on when Xθ(P) changes. We call an orientation ϕ ∈ [0, 2π) an event
orientation if Xϕ−ε(P) 6= Xϕ+ε(P) for any ε > 0. At each event orientation, an “event” occurs;
either a new point in P appears at the staircase or an existing one disappears. We call the former
type of events in-events and the latter out-events.

We use standard data structures. The event queue Q is a priority queue which stores events
indexed by their occurring time (or, orientation). We also store the points in Xθ(P) in a balanced
binary search tree T , in order ≺θ, so that we can add and delete a point in O(log n) time.

If an in-event occurs at orientation θ, a point q ∈ P \Xθ−ε(P) appears to Xθ(P) and also to
Sθ(P). Say that q appears between p and r in Sθ(P). Then, at orientation θ, the step sθ(q, r)
between q and r degenerates to a line segment, that is, q lies on sθ(p, r). Similarly, when an out-
event occurs and q between p and r with p, q, r ∈ Sθ(P) is about to disappear, sθ(p, q) degenerates
to a line segment and q lies on sθ(p, r). Figure 2 shows some changes on Sθ(P) as θ increases,
including an in-event and an out-event.

Observation 1. When an event occurs at orientation θ, there is a degenerate step in Sθ(P) and
one of its two corresponding points is the event point.

Now, we consider the disk with diameter pr with p and r consecutive in Xθ(P) with respect
to ≺θ. We denote by D(p, r) the half-disk with diameter pr that contains the triangle defined
by sθ(p, r) and pr as in Figure 2(a). The corner of sθ(p, r) goes along the circular arc of D(p, r)
counter-clockwise as θ increases, since sθ(p, r) always makes the right angle at the corner. We
denote two segments of sθ(p, r) by sh

θ (p, r) and sv
θ(p, r), horizontal and vertical ones. Observe that

as θ increases sh
θ (p, r) sweeps region in D(p, r), and if it encounters a point q ∈ P , we have an

in-event and q comes up to the staircase. This corresponds to a new extremal point. Similarly,
when sh

θ (p, q) degenerates to q we have an out-event and q will disappear from the staircase. See
Figure 2.

q

(a)

p

r q

(c)

p

r

q

(d)

p

r q

(e)

p

r

(b)

p

r

q

Figure 2: Changes on Sθ(P) as θ increases; (a) q lies in D(p, r). (b) sh
θ (p, r) hits q, an in-event

occurs, and q rises up. (c) Sθ(P) contains q. (d) sh
θ (p, q) degenerates to point q, an out-event

occurs, and q is about to disappear. (e) After the out-event. All the other points in P lie in the
shaded side of each figure.

3

Observation 2. Let p and r be two consecutive points in Xθ(P) with respect to ≺θ. The next
upcoming in-event between p and r occurs at another point q that is first encountered by sh

θ (p, r)
among points in D(p, r) as θ increases. The out-event of q occurs when sh

θ (p, q) degenerates to q.

By those observations, we know that every event can be captured locally. It is easy in O(n)
time to predict the very next in-event between two consecutive extremal points with respect to ≺θ

and the out-event of each extremal point at the current orientation. Indeed, one can reduce this
time complexity to sublinear by using some complicated data structures, which will be discussed
at the end of this section.

Initially, we compute X0(P) and S0(P), and store it into T in O(n log n) time. Then, we
predict in-events and out-events corresponding to S0(P) and insert them into Q. Now, we are
ready to run the main loop. As usual, we extract the upcoming event from the event queue Q,
and handle it according to its type. We end this loop if the current orientation θ is at least 2π:

In-event We put the new point q between p and r into T . Compute the in-events between p and
q, and between q and r; also the out-event of q. Insert all the computed events into Q.

Out-event Remove the disappearing point q between p and r from T , and in-events in which q
is involved from Q. Compute the in-event between p and r, and insert it into Q.

The total running time is proportional to the number of events we handle during the algorithm.
The following lemma answers the essential question.

Lemma 1. Any point in P can appear in Xθ(P) at most four times as θ increases from 0 to 2π.

Proof. We claim that if a point q ∈ Xθ(P) is about to disappear at orientation θ, then q cannot
appear again to Xθ+ϕ(P) for 0 < ϕ < π/2. This simply implies the lemma.

We now prove our claim. Assume that q ∈ Xθ(P) is about to disappear from Xθ(P), that is,
the out-event of q occurs at θ. Recall by definition that a point q′ ∈ Xθ(P) if and only if the
intersection of two quadrants by extending two steps incident on q′ is free to P . (Obviously, the
intersection is a quadrant again.) Thus, in orientation θ there is a point p ∈ P directly above q
since q will disappear after θ (See Figure 2(d).)

Note that maintaining the staircase is invariant under rigid motions. Also, increasing θ is
equivalent to rotating the points P clockwise. Now, we transform P by an affine mapping so that
q is mapped to the origin. Instead of increasing θ, we rotate p clockwise around q. It is easy to see
that p lies in the first quadrant until we rotate the points by more than π/2. Thus, we conclude
our claim and then the lemma.

Finally, we conclude one of our main results.

Theorem 1. The staircase has at most O(n) combinatorial changes while rotating the orientation.
These changes can be maintained in O(n2) time and O(n) space.

Proof. By Lemma 1, we have at most O(n) events during the algorithm. Since each event is
associated with exactly one combinatorial change in the staircase while rotating the orientation,
we have at most O(n) such changes Also, it suffices to handle and predict each event in linear
time. Hence, our algorithm reveals all such changes in O(n2) time and O(n) space.

2.1 Predicting the next in-event in sublinear time

In this subsection, we present a faster way to maintain the staircase. Indeed, the bottleneck of our
algorithm is the part of predicting the next in-event. Note that predicting an out-event can be
preformed in constant time. Here, we present how to predict the next in-event in sublinear time so
that the total running time of the algorithm reduces to subquadratic, and moreover a time/space
trade-off can be obtained.

Observe that the next in-event between p and q occurs by a point contained in the lune shape
Lθ(p, q) defined by D(p, q) and the half-plane below sh

θ (p, q). The first key idea is to restrict

4

candidates to those inside Lθ(p, q) by the range searching with such a lune shape, which is the
intersection of a disk and a half-plane. Since a disk range on the plane can be processed by a
half-space range in 3 dimensional space by a well-known lifting-up transformation, the lune shape
range searching in R2 can be viewed as the range searching with intersections of two half-spaces
in R3. Thus we adopt the range searching structure by Matoušek:

Theorem 2 (Matoušek [5]). Let P be an n-point set in Rd and let m be a parameter, n ≤ m ≤ nd.
The range searching problem with the ranges being intersections of p half-spaces, 1 ≤ p ≤ d + 1,
can be solved with space O(m), query time

O
(n

m1/d
logp−(d−p+1)/d m

n

)

and preprocessing time O(n1+δ + m(log n)δ), for δ > 0.

We fix d = 3 and p = 2 so that we have a structure Rm(P) for the lune range searching among
P . This structure can report all the points in the queried lune shape Lθ(p, q), but what we need is
only one point that will cause the in-event between p and q. In order to get such a point without
reporting other points in the range, we make use of special secondary data structures. Note that
the range searching structure Rm(P) is based on a partition tree [1, 4, 5]. Thus, with each internal
node v, we associate a secondary structure C(Pv) for its canonical subset Pv ⊆ P . The structure
C(Pv) is supposed to answer a point r ∈ Pv which we first meet with the line supporting sh

θ (p, q)
rotated counter-clockwise at q. Such a point r should be in convex position and indeed be the
contact point of a tangent line to conv(Pv) through q. Hence, once we have computed the convex
hull conv(Pv) of Pv, it can be done in time O(log |Pv|) = O(log n).

To process a query Lθ(p, q), we searchRm(P) and get at most O(n/m1/3 log4/3 m/n) number of
canonical subsets. Then, at each corresponding internal node of Rm(P) we find the same number
of candidates for the in-event point. This query process takes O(n/m1/3 log7/3 m/n) time. The
preprocessing and the storage need an extra factor of O(log m) = O(log n), since Rm(P) has depth
at most O(log m). Thus, we can conclude the following time/space trade-off result.

Theorem 3. While rotating the orientation, the staircase of n points can be maintained in time

O

(
n1+δ log n + m(log n)1+δ +

n2

m1/3
log7/3 m

n

)

in space O(m log n), where m is a parameter with n ≤ m ≤ n2.

Consequently, if we choose m = n3/2, then the above theorem yields an algorithm which runs
in O(n3/2 log7/3 n) time and O(n3/2 log n) space.

3 Minimum Enclosing L-shapes

In this section, we present an efficient algorithm for computing an optimal orientation for minimum
area enclosing L-shapes of a set P of n points. First, we observe the following.

Observation 3. In any orientation, the minimum area enclosing L-shape of P touches at least
one point in P on each of the six sides of its boundary.

Thus, we can restrict our candidate L-shapes for each side to have at least one point, and
can describe them by at most six touching points. Note that these points can be shared by two
adjacent sides, or possibly by more than two sides when some of them have length zero. Let Rθ be
the minimum bounding box of P and Eθ be the largest empty rectangle which shares the upper
right corner with Rθ, both parallel to θ. Then the minimum area enclosing L-shape Lθ(P) is
represented by Lθ(P) = Rθ − Eθ. Let p1, · · · , p6 be six points touching each side of Lθ(P); the
index is ordered counter-clockwise from the point on the top side of Rθ as shown in Figure 3. Now,
we assume pi’s with 1 ≤ i ≤ 6 to represent the minimum area L-shapes Lθ(P) during orientation
0 ≤ α < θ < β < 2π; that is, for any α < θ < β, the boundary of Lθ(P) touches the same sequence
of six points in P . The following lemma shows how to get a local optimal orientation over [α, β].

5

p1

p2

p3

p4

p5

p6

q1

q2
q3

q4

q6

φ1

φ2

θ1

θ2

q5

Figure 3: The minimum area L-shape Lα(P) of P in orientation α with six defining points and
other properties.

Lemma 2. One can minimize the area of Lθ(P) over 0 ≤ α ≤ θ ≤ β < 2π, where the sequence of
six touching points remains the same in orientation θ ∈ (α, β).

Proof. We use all the symbols as defined above. Furthermore, we need more terms. Define

d1 := length(p1p3), d2 := length(p2p4), c1 := length(p1p5), and c2 := length(p4p6).

Let q1, · · · , q6 be the six corners of Lα(P) that are ordered by traversing its boundary counter-
clockwise from the upper left corner q1. In orientation α, we consider following angles as seen in
Figure 3:

θ1 := ∠p1p3q3, θ2 := ∠p4p2q2,

φ1 := ∠p5p1q6, φ2 := ∠p6p4q4.

We then have area(Rα) = d1d2 sin θ1 sin θ2, area(Eα) = c1c2 sin φ1 sin φ2, and

area(Rα+δ) = d1d2 sin(θ1 − δ) sin(θ2 − δ)
area(Eα+δ) = c1c2 sin(φ1 + δ) sin(φ2 − δ),

where 0 ≤ δ ≤ β − α. Thus, we can express the area of Lθ(P) as a sinusoidal function AL of δ:
AL(δ) := area(Lα+δ(P)) = area(Rα+δ) − area(Eα+δ). In order to obtain the minimum of AL on
(0, β−α), if any, we solve the equation A′L(δ) = 0, where A′L is the first derivative of AL. Through
some tedious work on equations, we get

A′L(δ) = d1d2(− cos(θ1 − δ) sin(θ2 − δ)− sin(θ1 − δ) cos(θ2 − δ))
−c1c2(cos(φ1 + δ) sin(φ2 − δ)− sin(φ1 + δ) cos(φ2 − δ))

= −d1d2 sin(θ1 + θ2 − 2δ)− c1c2 sin(−φ1 + φ2 − 2δ)
= d1d2 sin(2δ − θ1 − θ2) + c1c2 sin(2δ + φ1 − φ2)

Solving A′L(δ) = 0, we have

δ =
θ1 + θ2

2
− 1

2
arctan

(
c1c2 sin(θ1 + θ2 + φ1 − φ2)

d1d2 + c1c2 cos(θ1 + θ2 + φ1 − φ2)

)
.

Since 0 < δ < β−α < 2π, the equation A′L(δ) = 0 has at most a constant number of solutions
in the domain, which are either local minima or maxima. A local optimal orientation can be
searched among those orientations.

Now, we are ready to conclude the main theorem of this section.

6

Theorem 4. Given a set P of n points, one can decide an optimal orientation, which minimizes
the area of L-shape Lθ(P) enclosing P over 0 ≤ θ < 2π, in O(n2) time and O(n) space.

Proof. In this proof, we present an algorithm for computing optimal orientations for L-shapes.
As a subroutine, it makes use of the algorithm maintaining the staircase presented in Section 2.
Also, we make use of the method described in the proof of Lemma 2. By Lemma 2, if we can fix
one point on each side of Lθ(P) during α ≤ θ ≤ β for some 0 ≤ α ≤ β ≤ 2π, then we are able to
decide the local optimum in the domain for those at most 6 points.

In addition we need to handle another type of events that occur when the current orientation
θ is parallel or perpendicular to an edge of conv(P). Such an event is easy to predict once we
have computed conv(P). The total number of all events still remains linear in n. Let αi be the
event orientations ordered by their occurrences. For each interval [αi, αi+1], we have the same
four points determining Rθ for every θ ∈ (αi, αi+1) and further Xθ(P) does not change in the
interval. Recall that Lθ(P) = Rθ − Eθ and Eθ is determined by one step of Xθ(P). Thus, we
minimize every L-shape determined by each step in Xθ(P) in the interval [αi, αi+1], and then pick
the minimum of these minima. This in |Xθ(P)| time gives us the local optimal orientation in the
orientation interval. Since we have O(n) number of such intervals, all the process can be done in
O(n2) time in order to get a global optimum from gathered local optima.

One might wonder if there exists such a nice nature that, for instances, optimal orientations
are parallel or perpendicular to an edge of the convex hull of P , or there are at least two points
on a segment of the boundary of the L-shape in optimal orientation. If so, one can easily compute
the minimum area enclosing L-shape over all orientations by testing a small number of candidate
orientations. However, L-shapes do not have such a property.

Figure 4: Three points P = {(1, tan ε), (tan ε, 1), (0, 0)} with 0 < ε < π/12 and enclosing L-shapes
L0(P) and Lε(P) in orientation 0 and ε.

Lemma 3. There exists a set P of points such that no orientations parallel or perpendicular to a
line through a pair of points in P are optimal for the area of L-shapes.

Proof. See Figure 4. Let ε < π/12 be a positive constant, and P be a set of three points P =
{(1, tan ε), (tan ε, 1), (0, 0)}. It is not difficult to check that 0 is the only optimal orientation,
which implies the lemma.

4 Minimum Quadrant Hulls

In this section, we consider how to find an optimal orientation for quadrant hulls. As aforemen-
tioned, we make use of the algorithm maintaining the staircase described in Section 2 to get an
efficient solution. First, recall that the quadrant hull QHθ(P) in orientation θ can be described
by four staircases, Sθ(P), Sθ+ π

2
(P), Sθ+π(P), and Sθ+ 3

2 π(P). We call two staircases Sθ(P) and
Sθ′(P) opposite staircases if θ and θ′ differ by π , and adjacent staircases if θ and θ′ differ by
π/2. We denote the set of the four staircases by Sθ(P). Note that QHθ(P) = QHπ/2+θ(P) and
Sθ(P) = Sπ/2+θ(P). We are thus interested only in orientations up to π/2.

7

As in the L-shape problem, there seems no hope to restrict the number of candidate orientations
for the minimum quadrant hull to a small number.

Lemma 4. There exists a set P of points such that no orientations parallel or perpendicular to a
line through a pair of points in P are optimal for the area of quadrant hulls.

(a) (b) (c)

Figure 5: A set P of 6 points and its quadrant hulls in three orientations.

Proof. Let P be a set of six points; P = {(−3,−2), (0,−2), (3,−2), (−3, 2), (0, 2), (3, 2)}. Among
orientations from the pairs of points in P are 0, tan−1 2

3 and tan−1 4
3 . QH0(P) coincides with

conv(P) and its area is 24. If we take θ = tan−1 2
3 , QHθ(P) is depicted in Figure 5(a). Its area

is calculated as area(QHθ(P)) = 8 + 4
13 . If θ′ = tan−1 4

3 , QHθ′(P) looks like Figure 5(b) and its
area is area(QHθ′) = 7 + 17

25 . However, the area of QHπ/4(P) as in Figure 5(c) is only 7. This
orientation π/4 is neither parallel nor perpendicular to any line through a pair of points in P .

We thus devise a solution to the quadrant hull in a similar way as we did in L-shapes. Fur-
thermore, we have another difficulty in calculating the area of QHθ(P); as seen in Figure 6, two
staircases among those in Sθ(P) can cross each other.

Observation 4. At most one pair of opposite staircases can cross each other. If a step crosses
another, it does not cross any other and thus all such overlaps are axis-aligned rectangles.

Considering overlaps, we should refine the definition of combinatorially equivalent quadrant
hulls since the shape of QHθ(P) may change regardless of the equivalence of Sθ(P). Thus we also
take how Sθ(P) crosses into account, and define step-cross and step-release events as when two
steps in opposite staircases start crossing and when both become free to each other, respectively.

Predicting and handling these events including in-events and out-events is not very difficult if
we are allowed O(n) time: For a step s in Sθ(P), we check all steps in the staircase opposite to
s whether and when each will cross s, and pick the earliest one. We call the resulting event “the
step-cross event of a step s”. The step-release event of a pair of crossed steps is easy to compute.
Now, we explain how to handle events.

In-event An in-event removes a step but creates two new steps. We perform the same operations
as in maintaining the staircase. Further, compute the corresponding step-cross events, if
any, and insert them into Q and delete the useless step-cross event of the removed step from
Q.

Out-event Similarly, compute corresponding step-cross events and delete useless events from Q.

Step-cross event Compute the step-release event of the involved pair of steps and insert it to
Q.

Step-release event Compute the step-cross event of each of the two involved steps and insert
them into Q.

The following lemma counts the total number of events.

Lemma 5. We have at most O(n) events in total.

8

p

q

r

s

(e)

p

q

r

s

(a)

p

q

r

s

(b)

p

q

r

s

(c)

p

q

r

s

(d)

Figure 6: (a) Two steps in opposite staircases. (b) A step-cross event occurs. (c) The shaded
region is the overlap. (d) A step-release event occurs. (e) Two steps are separated.

Proof. In Section 2, we have shown that there are at most O(n) number of in-events and out-
events. Here, we show that we have at most O(n) step-cross events, which implies the same
number of step-release events, and thus at last O(n) events in total.

In this proof, we count the number of possible step-cross events only between Sθ(P) and
Sπ+θ(P), then the other case being symmetric. If we have such a step-cross event at θ between
Sθ(P) and Sπ+θ(P), then the two horizontal segments of the involved steps are aligned in a
horizontal line segment as in Figure 6(b). Note that the endpoints of the line segment are extremal
points of the involved steps. We call such a segment a step-cross segment. Note that such a step-
cross segment induced by a step-cross event between Sθ(P) and Sπ+θ(P) is parallel to θ.

Consider the graph G in the plane with vertices P consisting of all the step-cross segments
between Sθ(P) and Sπ+θ(P) for θ ∈ [0, π/2) as its edges. We claim that no two step-cross segments
cross each other, which implies that G has O(n) edges and thus there are at most O(n) step-cross
segments, including those between Sπ/2+θ(P) and S3π/2+θ(P) by symmetry.

a b

p

q

c

d

sθ1
(d, a)

sθ1
(c, b)

Figure 7: Proof of Lemma 5

Assume to the contrary that G contains two distinct step-cross segments ab and pq in orienta-
tions θ1 and θ2, respectively, with θ1 < θ2 such that they cross each other. Note that θ2−θ1 < π/2
since 0 ≤ θ1 < θ2 < π/2, and we can find the four steps sθ1(c, b), sθ1(d, a), sθ2(r, p), and sθ2(s, q)

9

defining ab and pq, for some c, d, r, s ∈ P .
By definition, the quadrants supporting sθ2(r, p) and sθ2(s, q) are free to P and their horizontal

segments overlap along pq. Since ab and pq cross, a lies below and b lies above the line supporting
pq, and a lies strictly to the left of b with respect to orientation θ2. To make the quadrants
supporting the steps free to P , r must be to the left of a and s must be to the right of b with
respect to orientation θ2. This contradicts that the horizontal segments of sθ2(r, p) and sθ2(s, q)
overlap and we have a step-cross event at θ2 by the two steps.

The main loop is performed while θ < π/2; since we handle four staircases at the same time,
all the required events occur before π/2. The space of orientations is partitioned into a linear
number of intervals [αi, αi+1), where i runs from 0 to the total number of events. The following
subsection gives us a way to compute a local optimum in each such interval in linear time.

4.1 Finding Local Optima of QHθ(P)

Here, we assume that an orientation interval (α, β) does not contain any event orientation and the
current orientation θ runs in between (α, β). Thus, we can also say that Sθ(P) contains m points
of P and k overlaps. Let p1 be the first point in Sθ(P) (or the point with highest y coordinate
in orientation θ), and pi be the i-th point in Sθ(P) in clockwise order. We get a polygon P by a
sequence of m sides pipi+1 with 1 ≤ i ≤ m − 1, and pmp1. Observe that two sides cannot cross
each other so that we can compute the area of P in O(m) time. Recall that since we have no
event orientation in θ ∈ (α, β), these extremal points and P do not change in the interval. Also,
we let si(θ) be the step of pi and pi+1 at θ, and 4i(θ) be the right triangle defined by si(θ) as in
Section 2.

Let ¤j(θ) be the rectangle defined by each overlap in Sθ(P), where 1 ≤ j ≤ k. Then, the area
of QHθ(P) is

area(QHθ(P)) = area(P)−
∑

i

area(4i(θ)) +
∑

j

area(¤j(θ)).

To minimize the area of QHθ(P) over θ ∈ (α, β), we analyze the functions area(4i(θ)) and
area(¤j(θ)), and obtain a nice representation so that we can get an optimum in an analytic way.

Lemma 6. Let (α, β) with 0 ≤ α < β < π/2 be an orientation interval such that it contains no
event orientation. Once we have computed Sα(P) and QHα(P), it is possible in linear time to
compute a local optimal orientation in which the area of QHθ(P) is minimized over θ ∈ (α, β).

Proof. Let di be the length of the hypotenuse of 4i(α) and φi be the internal angle of 4i(α) at
pi. Then,

area(4i(θ)) = d2
i cos(φi + (θ − α)) sin(φi + (θ − α)).

Substituting θ − α by ϕ, we get area(4i(θ)) = d2
i cos(φi + ϕ) sin(φi + ϕ) = 1

2d2
i sin 2(φi + ϕ)

= 1
2d2

i sin 2φi cos 2ϕ + 1
2d2

i cos 2φi sin 2ϕ, which is linear in cos 2ϕ and sin 2ϕ. Therefore, the sum
over all i is of the same form:

∑

i

area(4i(θ)) =
1
2

(∑

i

d2
i sin 2φi

)
cos 2ϕ +

1
2

(∑

i

d2
i cos 2φi

)
sin 2ϕ.

Now, we deal with each overlap ¤j(θ) in which two steps sa(θ) and sb(θ) are involved. As-
sume without loss of generality that sa(θ) belongs to Sθ(P) and sb(θ) to Sπ+θ(P). Denoting the
coordinate of a point p in orientation α by (xp, yp),

area(¤j(α)) = |xpa − xpb
| × |ypa+1 − ypb+1 |,

where | · | returns the absolute value. The point pi in orientation θ = α + ϕ can be regarded as
the transformed points by rotation by −ϕ in orientation α. Also, the area of ¤j(θ) is invariant

10

under translations. Thus, area(¤j(θ)) = area(¤j(α + ϕ)) = |xp′a − xp′b | × |yp′a+1
− yp′b+1

| =
|(xpa

− xpb
) cos ϕ + (ypa

− ypb
) sin ϕ| × |(ypa+1 − ypb+1) cos ϕ− (xpa+1 − xpb+1) sin ϕ| = C1 cos2 ϕ +

C2 sin2 ϕ + C3 sin ϕ cos ϕ, where p′i is the rotated point of pi by −ϕ with ϕ < π/2, and C1, C2,
and C3 are constants depending on the coordinates and α. This equation can be rewritten to be
linear in sin 2ϕ and cos 2ϕ again as follows:

area(¤j(θ)) = C ′1 + C ′2 cos 2ϕ + C ′3 sin 2ϕ,

where C ′1 = C1+C2
2 , C ′2 = C1−C2

2 , and C ′3 = C3
2 .

Consequently, the area of QHθ(P) with α < θ < β can be represented by a function f of ϕ
which is linear in sin 2ϕ and cos 2ϕ, where 0 < ϕ < β − α. By solving f ′(ϕ) = 0, where f ′ is the
derivative of f , we get a local minimum (or maximum) of the area of QHθ(P) with θ ∈ (α, β).
All this process can be done in linear time.

Now, we conclude the following theorem.

Theorem 5. Given a set P of n points, one can decide an optimal orientation, which minimizes
the area of the quadrant hull QHθ(P) over 0 ≤ θ < 2π, in O(n2) time and O(n) space.

5 Concluding Remarks

We presented algorithms for computing the minimum area enclosing L-shape and quadrant hull of
given points for arbitrary orientation. The algorithms run in quadratic time, while the problems
can be solved in O(n log n) time for a fixed orientation. We must ask about their lower bounds:
Computing the staircase for a fixed orientation can be reduced to sorting numbers, and so is
computing the quadrant hull. But the lower bound for the L-shape is not known except for trivial
bounds. Also, the upper bounds could be improved to subquadratic. However, for the minimum
area quadrant hull, the objective function consists of a linear number of terms in worst cases; it
seems not so easy to improve the upper bound.

Our solutions for finding minimum area enclosing shapes internally maintain extremal points,
constituting the staircase, over all orientations. Indeed, maintaining extremal points has its own
interest. In computational geometry, dynamic data structures have been intensively studied over
last several decades; they mainly focus on how to efficiently handle online updates of their under-
lying data. Our problem of maintaining the staircase deals with predictable updates over bounded
domain, and was proven to be useful in solving geometric optimization problems which are variant
to orientations. Obviously, there are many data structures and optimization problems variant to
orientations, and we expect that many such optimization problems could be efficiently solved by
maintaining a certain data structure over all orientations.

References

[1] Pankaj K. Agarwal and Jeff Erickson. Geometric Range Searching and Its Relatives. In B.
Chazelle, J. E. Goodman, and R. Pollack, editors. Advances in Discrete and Computational
Geometry, volume 233 of Contemporary Mathematics. 1–56, American Mathematical Society
Press, Providence, 1999.

[2] M. de Berg and M. van Kreveld and M. Overmars and O. Schwarzkopf. Computational Ge-
ometry: Algorithms and Applications. Springer 2000.

[3] Rolf G. Karlsson and Mark H. Overmars. Scanline Algorithms on a Grid. BIT Numerical
Mathematics 28(2):227–241, 1988.

[4] Jǐŕı Matoušek. Efficient Partition Trees. Discrete Comput. Geom. 8:315–334, 1992.

11

[5] Jǐŕı Matoušek. Range Searching with Efficient Hierarchical Cuttings. Discrete Comput. Geom.
10:157–182, 1993.

[6] J. Matoušek and P.Plecháč. On Functional Separately Convex Hulls. Discrete Comput. Geom.
19:105–130, 1998.

[7] D. Y. Montuno and A. Fournier. Finding the x− y Convex Hull of a Set of x− y Polygons.
Technical Report 148, University of Toronto.

[8] T. M. Nicholl and D. T. Lee and Y. Z. Liao and C. K. Wong. On the X − Y Convex Hull of
a Set of X − Y Polygons. BIT Numerical Mathematics 23(4):456–471, 1983.

[9] T. Ottman and E. Soisalon-Soisinen and D. Wood. On the Definition and Computation of
Rectilinear Convex Hulls. Information Sciences 33:157–171, 1984.

[10] Franco P. Preparata and S. J. Hong. Convex Hulls of Finite Sets of Points in Two and Three
Dimensions. Communications of the ACM, 20(2):87–93, 1977.

[11] Otfried Schwarzkopf and Ulrich Fuchs and Günter Rote and Emo Welzl. Approximation of
Convex Figures by Pairs of Rectangles. In Proc. 7th Ann. Symp. on Theoretical Aspects of
Computer Science (1990), 240–249.

[12] E. Welzl. Smallest Enclosing Disks (Balls and Ellipsoids). In New Results and New Trends in
Computer Science, Springer LNCS 555 (1991), 359–370.

12

