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1 Introduction

We consider the following problem: given two compact convex sets P and Q
in the plane, find a rigid motion ϕ such that the area of ϕP ∩Q is maximized,
where ϕP is the image of P under ϕ.

The area of overlap (or, equivalently, the area of the symmetric difference) of
two planar regions is a natural measure of their similarity that is insensitive
to noise [4,6]. Most previous theoretical work on the problem has restricted
ϕ to be a translation. De Berg et al. [6] gave an O(n log n) time algorithm to
solve the problem for two convex polygons with n vertices in total, making use
of the Brunn-Minkowski theorem, and gave a constant-factor approximation.
If ϕ is restricted to be a translation along a given line, then a linear time
algorithm is possible [3]. Alt et al. [4] gave a constant-factor approximation
for the minimum area of the symmetric difference.

More general objects have also been considered. Mount et al. [10] studied the
function mapping a translation vector to the area of overlap of a translated
simple n-vertex polygon P with another simple m-vertex polygon Q, show-
ing that it is continuous, piecewise polynomial of degree at most two, has
O((nm)2) pieces, and can be computed within the same time bound. No algo-
rithm is known that computes the translation maximizing the area of overlap
that does not essentially construct the whole function graph. De Berg et al. [5]
consider the case where P and Q are disjoint unions of n and m unit disks,
with n 6 m. They compute a (1 − ε)-approximation for the maximal area of
overlap of P and Q under translations in time O((nm/ε2) log(m/ε)).

In contrast, surprisingly little is known about the problem if ϕ can be any
rigid motion. Alt et al. [2] made some initial progress on a similar problem,
showing, for instance, how to construct, for a convex polygon P , the axis-
parallel rectangle Q minimizing the symmetric difference of P and Q. In the
case where P and Q are disjoint unions of n and m unit disks, de Berg et al. [5]
compute a (1− ε)-approximation for the maximal area of overlap of P and Q
under rigid motions in time O((n2m2/ε3) log m). Dickerson and Scharstein [8]
consider the case where P is a convex m-gon, and Q a set of n points in the
plane, and show how to find a rigid motion of P that contains the maximum
number of points in Q. Finally, Cheong et al. [7] gave a general framework
for maximizing the overlap of two shapes. This framework can be applied to
convex polygons, but computes an approximation with absolute error, that is, a
rigid motion ϕ such that the area of ϕP∩Q is at least the optimal area minus ε
times the area of P . No algorithm is known that solves the problem exactly.
The standard approach of decomposing the configuration space into regions
where the intersection of the two polygons is combinatorially invariant does not
easily lead to such an algorithm. The difficulty is that the function expressing
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the area of intersection for a known combinatorial type is complicated, and it
is not clear whether the maximum of this function can be found exactly under
a realistic model of computation.

Ahn et al. [1] recently gave an algorithm to find an approximation to the largest
axially-symmetric convex polygon included in a given convex polygon P . This
can be considered a special case of our problem, where Q is a reflected copy
of P . Their solution exploits this special relationship between Q and P , and
does not generalize to our more general problem. Indeed, the hardest case in
the analysis of our algorithm is when P is a rather “round” polygon, and Q
is long and skinny—this cannot happen in their setting.

We give an algorithm that, given any ε > 0, computes a rigid motion ϕ such
that the area of ϕP ∩ Q is at least 1 − ε times the maximum possible area.
It performs O(1/ε) extreme point and line intersection queries on the convex
sets P and Q, and requires additional time O((1/ε2) log(1/ε)).

Our algorithm is in fact surprisingly simple. Given two polygons P and Q
with n vertices in total, we generate a set of O(1/ε) orientations for P , and
run the O(n log n) algorithm of de Berg et al. [6] to compute the optimal
translation for each orientation. The total running time of this procedure is
O((n log n)/ε), and the difficulty lies entirely in the selection of appropriate
orientations—uniform sampling does not work, and the set of orientations
needs in fact to be chosen based on the aspect ratios of P and Q—and in
proving the approximation bound.

Like Ahn et al. [1], we then show that we can replace the convex input sets
P and Q by polygonal inner approximations, whose complexity depends on ε
only (and not on the complexity of the input sets). This simplification can be
done entirely using two kinds of queries on the input sets, namely intersecting
queries with a line, and finding the point extreme in a given direction. In
the problems studied by Ahn et al. [1], the well-known Dudley approximation
with O(1/

√
ε) vertices could be used as this inner approximation. In this

paper, we introduce two new approximations that are stronger than Dudley’s
in two different senses, but unfortunately both require Θ(1/ε) vertices. The
same inner approximations can be used to approximately solve the problem of
maximizing the overlap of planar convex sets under translations. This requires
O(1/ε) extreme point and line intersection queries on the convex sets P and Q,
and additional time O((1/ε) log(1/ε)).

If P and Q are convex n-gons, given as an array or balanced tree containing the
vertices in sorted order, then the two queries can be implemented in O(log n)
time. The running time of our algorithm is then O((1/ε) log n+(1/ε2) log(1/ε))
for rigid motions and O((1/ε) log n+(1/ε) log(1/ε)) for translations. If the con-
vex n-gons are given differently, for instance as a linked list, then an additional
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O(n) term has to be added.

The reader may wonder why we cannot simply use the “naive” approach of
first approximating both sets using Dudley’s approximation, and then running
an exact algorithm on the approximations. This approach fails for two reasons:
First, as mentioned above, no exact algorithm is known, and if one is found,
it is likely to be quite complicated and impractical. Second, we have not been
able to prove that an exact solution to the problem for Dudley’s approximation
guarantees a (1−ε)-approximation for the original sets (the proof of Claim (1)
in Section 5 breaks down if we use Dudley’s approximation). It would be nice
to either prove this (as it would also improve the time bound of our algorithm
by a factor of O(1/

√
ε)), or to find a counter-example.

2 Preliminaries

Let C denote a compact convex set in the plane. We let |C| and d(C) denote
the area and diameter of C. Let w(C) denote the width of C, that is, the
minimum distance between two parallel lines enclosing C. We call a pair of
points (p, q) in C an antipodal grasp of C if C lies inbetween the lines through
p and q orthogonal to pq, see Figure 1. The width is always achieved by an

p

q

Fig. 1. An antipodal grasp.

antipodal grasp, as the following lemma shows.

Lemma 1 Let C be a compact convex set in the plane. There is an antipodal
grasp (p, q) of C such that the segment pq ⊂ C has length w(C). If C is a
convex n-gon, then such an antipodal grasp can be found in O(n) time.

PROOF. Let `1 and `2 be two parallel lines that achieve the width. Let
s1 = `1 ∩ C and s2 = `2 ∩ C (by convexity of C, these sets are either points
or segments). Assume that there is no pair of points (p, q) ∈ s1 × s2 such
that pq is orthogonal to `1 and `2. (See Figure 2.) Since s1 and s2 are convex,
this implies that there is a line ` orthogonal to `1 and `2 such that s1 and
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Fig. 2. Proof of Lemma 1.

s2 lie strictly on different sides of `. Let p1 (resp. p2) denote the intersection
of ` with `1 (resp. `2). If we rotate `1 slightly around p1 towards s2, and `2

around p2 towards s1, we obtain two parallel lines enclosing C whose distance
is less than w(C), a contradiction.

It follows that an antipodal grasp (p, q) realizing the width exists. In case
C is a convex n-gon, we can find it in O(n) time using the rotating calipers
technique of Toussaint [12]. 2

We will call a segment pq as in Lemma 1 a spine of C. A similar statement
for the diameter is well-known:

Lemma 2 Let C be a compact convex set in the plane. Any segment pq ⊂ C
of length d(C) defines an antipodal grasp (p, q).

Width and diameter allow us to approximate the area of a convex set.

Lemma 3 Let C be a compact convex set in the plane. Then w(C)d(C)/2 6
|C| 6 w(C)d(C).

PROOF. Let R be the rectangle circumscribed to C with two sides parallel
to a spine of C and such that C touches all four sides of R. The sides of R
have length w(C) and d 6 d(C), and so |C| 6 |R| = w(C)d 6 w(C)d(C).

Let now R′ be the rectangle circumscribed to C with two sides parallel to a
diameter of C and such that again C touches all four sides of R′, see Figure 3.
The sides of R′ have length d(C) and w > w(C). C contains two triangles
with a common base of length d(C), and total height w. This implies |C| >
d(C)w/2 > w(C)d(C)/2. 2
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d(C)

w(C) 6 w

R′

Fig. 3. Proof of Lemma 3.

Diameter, width, and area of a convex n-gon can all be computed in linear
time [12], and this is optimal. To achieve sublinear algorithms, and to handle
non-polygonal convex sets, we need to be able to process two queries on convex
sets. Given a convex set C, let TC be the time to answer the following two
kinds of queries: (a) given a direction vector u, find the point v in C extreme
in direction u, that is, maximizing the dot product 〈v, u〉; and (b) given a line
`, find the intersection ` ∩C (a line segment). Obviously, TC depends on how
C is represented—for instance, TC = O(log n) if C is a convex n-gon stored in
an array (in sorted order), but TC = Θ(n) if it is stored in a linked list.

The following lemma allows us to compute rough estimates of diameter, width,
and area of a convex set using these queries. Let dist(p, q) denote the Euclidean
distance between points p and q.

Lemma 4 Let C be a compact convex set in the plane. In O(TC) time we can
find two rectangles r and R such that:

(i) r ⊂ C ⊂ R, with C touching all four sides of R.
(ii) r and R are homothetic, with a homothety ratio 3

√
2.

(iii) Let d and w be the lengths of the sides of R, with d > w. Then d(C)/
√

2 6
d 6 d(C), w(C) 6 w 6 2

√
2w(C), and |R|/(2√2) 6 |C| 6 |R|.

PROOF. By doing four queries, we can find the axis-parallel bounding box
R′ of C. Let a′ > b′ > 0 be its sides, and pick the vertices p, q of C touching
the sides of R′ of length b′, see Figure 4. Then a′ 6 dist(p, q) 6 d(C) 6
d(R) 6

√
2a′. Using four more queries, we now find the smallest rectan-

gle R containing C with two sides parallel to pq. These sides have length
a > dist(p, q) > a′ > d(C)/

√
2, and the other sides have length b. Since C

contains two triangles with a common base pq and total height b, we have ab =
|R| > |C| > dist(p, q)b/2 > a′b/2 > (d(C)/

√
2)b/2 > ab/(2

√
2) = |R|/(2√2).

From d(C)/
√

2 6 a′ 6 dist(p, q) follows d(C)b 6
√

2dist(p, q)b 6 2
√

2|C| 6
2
√

2w(C)d(C), so b 6 2
√

2w(C).
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Fig. 4. Proof of Lemma 4.

Let now d := max(a, b), w := min(a, b). We have d 6 d(C), since there are
points of C on each pair of opposite sides of R, and w > w(C), since C is
contained inbetween two parallel lines at distance w. So d > a > d(C)/

√
2,

and w 6 b 6 2
√

2w(C), which completes the proof of (iii).

Now we show how to find r. Recall that dist(p, q) > d(C)/
√

2 > a/
√

2, and
C contains two triangles with a common base pq and total height b. Note
that one of these has height at least b/2. If it has an obtuse interior angle
around p (resp. q), then it contains a homothet r of R with homothety ratio
at least 1/(3

√
2) such that r has a corner at p (resp. q). Otherwise, it contains

a homothet r of R with homothety ratio at least 1/4 such that r has one side
lying in pq. Since we know one point of C touching each side of R, we can find
r in constant time. 2

Note that with more effort, better estimates can be obtained. For instance,
with O(1/

√
ε) queries, a (1 + ε)-approximation to diameter, width, and area

can be computed [1], and a homothety ratio of 2 + ε can be obtained [11].

The following lemma gives a somewhat larger inscribed rectangle, but does not
permit a sublinear construction. (Alternatively, one could show the existence
of an inscribed rectangle with sides d(C)/(2

√
2) and w(C)/2 using the results

by Schwarzkopf et al. [11]).

Lemma 5 Let C be a convex set in the plane. There is a rectangle r with
sides d(C)/2 and w(C)/4 contained in C. If C is a convex n-gon, then we can
compute r in O(n) time.
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PROOF. Let pq be a diameter of C, and let R be a rectangle circumscribed
to C with two sides parallel to pq such that C touches all four sides of R. Let w
be the side of R orthogonal to pq, see Figure 5. Then C contains two triangles

p qw

d(C)

Fig. 5. Proof of Lemma 5.

with a common base pq and total height w. One of these has height at least
w/2, and contains a rectangle of length dist(p, q)/2 = d(C)/2 and height at
least w/4 > w(C)/4.

If C is a convex n-gon, then we can compute its diameter in O(n) time [12],
and it is easy to find r in O(n) time. 2

This implies the following lower bound on the overlap of two convex sets under
rigid motions.

Lemma 6 Let C1 and C2 be convex sets in the plane. There is a rigid motion
ϕ such that

|ϕC1 ∩ C2| > 1

8
·min{d(C1), d(C2)} ·min{w(C1), w(C2)}.

PROOF. By Lemma 5 there are rectangles ri ⊂ Ci of size d(Ci)/2×w(Ci)/4,
for i = 1, 2. Let ϕ be the rigid motion maximizing |ϕr1 ∩ r2|. Then

|ϕr1 ∩ r2| > min{d(C1)/2, d(C2)/2} ·min{w(C1)/4, w(C2)/4},

and the lemma follows. 2

If two convex sets are long and skinny, the rigid motion achieving maximal
overlap must align them rather well.

Lemma 7 Let C1 and C2 be convex sets in the plane, let ϕopt be the rigid
motion maximizing |ϕoptC1 ∩ C2|, and let ϑ be the angle between spines of
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ϕoptC1 and C2. Then

sin ϑ 6 8 max{w(C1), w(C2)}
min{d(C1), d(C2)} .

PROOF. The set Ci is contained in an infinite strip of width w(Ci), for
i = 1, 2. When these two strips make an angle of ϑ > 0, their intersection is a
parallelogram of area w(C1)w(C2)/ sin ϑ. By Lemma 6, this area must be at
least min{w(C1), w(C2)}min{d(C1), d(C2)}/8. This implies the lemma. 2

We will need two more results. The first one is from Ahn et al. [1], the second
one is by de Berg et al. [6] and makes use of the Brunn-Minkowski theorem.

Lemma 8 ([1]) Let C be a convex set, and let C ′ be a copy of C, rotated by
an angle δ around a point p in C. Then

|C ∩ C ′| > |C| − πδ

2
d(C)2,

or, equivalently,

|C \ C ′| 6 πδ

2
d(C)2.

Lemma 9 ([6]) Given convex polygons P and Q in the plane with n vertices
in total, one can find in time O(n log n) the translation τ maximizing |τP ∩Q|.

3 An algorithm for convex polygons

Let P and Q be convex polygons with n vertices in total, and let ε > 0. Our
goal is to find a rigid motion ϕapp such that |ϕappP ∩Q| > (1− ε)|ϕoptP ∩Q|,
where ϕopt is the rigid motion maximizing |ϕP ∩Q|.

We do this by computing a set of O(1/ε) orientations for P , and the optimal
translation for each orientation using Lemma 9. To show the correctness of
this approach, we need to prove that starting with the optimal placement of P
(that is, with ϕoptP ), we can rotate P either way by a certain amount and lose
only ε|ϕoptP ∩Q|. We distribute the proof over the following two key lemmas.

Lemma 10 Let C1, C2 be convex sets with w(C2) 6 w(C1), let ε > 0, and let

δ 6 ε

4π

w(C2)

min{d(C1), d(C2)} .
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Then there are clockwise and counter-clockwise rotations ρ with angle δ such
that |ρϕoptC1 ∩ C2| > (1− ε)|ϕoptC1 ∩ C2|.

PROOF. In fact, any rotation ρ of angle δ around a point in ϕoptC1∩C2 will
do. To simplify the presentation, we assume that C1 is already in the optimal
placement, that is that ϕopt is the identity.

If d(C1) 6 d(C2) then it suffices to show that |(C1 ∩ C2) \ (ρC1 ∩ C2)| 6
εw(C2)d(C1)/8 by Lemma 6. We observe that (C1∩C2)\(ρC1∩C2) ⊂ C1\ρC1.

By Lemma 8, |C1 \ ρC1| 6 πδ
2
d(C1)

2 6 πε
8π

w(C2)
d(C1)

d(C1)
2 = ε

8
w(C2)d(C1), as

required.

If d(C1) > d(C2), we first observe that |ρC1∩C2| = |C1∩ρ−1C2|. By Lemma 6,
it suffices to show that |(C1 ∩ C2) \ (C1 ∩ ρ−1C2)| 6 εw(C2)d(C2)/8. We have
(C1 ∩ C2) \ (C1 ∩ ρ−1C2) ⊂ C2 \ ρ−1C2, and by Lemma 8 |C2 \ ρ−1C2| 6
πδ
2
d(C2)

2 6 πε
8π

w(C2)
d(C2)

d(C2)
2 = ε

8
w(C2)d(C2). 2

Lemma 11 Let C1, C2 be convex sets with w(C2) 6 w(C1)/4 and d(C2) >
d(C1)/2, let ε > 0, and let δ 6 ε 1

160
w(C1)
d(C1)

. Then there are clockwise and

counter-clockwise rotations ρ with angle δ such that |ρϕoptC1 ∩ C2| > (1 −
ε)|ϕoptC1 ∩ C2|.

PROOF. Again, let us assume that C1 is already in the optimal placement,
that is that ϕopt is the identity. It suffices to show the existence of the clock-
wise rotation—the existence of the counter-clockwise rotation then follows by
applying the lemma to mirror images of C1 and C2.

Let S be an infinite strip of width w(C2) containing C2, and choose a coor-
dinate system such that S is horizontal. Let R be the smallest axis-parallel
bounding rectangle for C1. We can assume that the distance between the up-
per edges of S and R is larger than the distance between the lower edges
(otherwise we rotate the coordinate system by 180◦). Since w(C2) 6 w(C1)/4,
and the height of R is at least w(C1), this implies that the distance between
the upper edges is at least 3

8
w(C1). Let R′ be that part of R that has distance

at least w(C1)/4 from the upper edge of R, see Figure 6. The distance between
the upper edges of R′ and S is still at least 1

8
w(C1). The horizontal width of R

is at most d(C1). This implies that a line with absolute slope less than 1
4

w(C1)
d(C1)

cannot intersect both the upper edge of R and R′. It follows that a line that is
tangent to C1 from above in a point u ∈ R′ has absolute slope at least 1

4
w(C1)
d(C1)

.

Let now ρ be the rotation by angle δ, in clockwise direction, around the inter-
section p of the lower edge of S with the left edge of R. Since d(C2) > d(C1)/2,
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R

R′

S

p

w(C2)

>
3

8
w(C1)

1

4
w(C1)

6 d(C1)

Fig. 6. The strip S and the rectangle R.

it suffices by Lemma 6 to show that |(C1∩C2)\(ρC1∩C2)| 6 εw(C2)d(C1)/16.

Let X := (C1∩C2)\ (ρC1∩C2) = (C1 \ρC1)∩C2, and consider a point q ∈ X.
Clearly q ∈ C1. We will show below that the horizontal distance between q and
the boundary of C1 is at most εd(C1)/32. Since C1 is convex, a horizontal line
` intersects it in an interval (if at all). The points of X ∩ ` lie in the leftmost
and rightmost piece of this interval, in two subintervals of total length at
most εd(C1)/16. Since q ∈ C2, we have q ∈ S, and so it suffices to integrate
over all horizontal lines in S to establish |X| 6 εw(C2)d(C1)/16, as desired.

It remains to prove the following claim: the horizontal distance between a
point q ∈ X and the boundary of C1 is at most εd(C1)/32. We observe that
q ∈ X implies q 6∈ ρC1, and therefore ρ−1q 6∈ C1. Let q′ := ρ−1q. The claim is
true if q lies within horizontal distance εd(C1)/32 from the left edge of R, so
let us assume that is not the case. This implies that the angle that the line pq
makes with a vertical line is at least

arctan

(
εd(C1)

32w(C2)

)
> arctan

(
εw(C1)

32

4

w(C1)

)

> arctan
(

ε

8

)
> ε

160
> δ,

thus q′ lies above and to the left of q (that is, has smaller x-coordinate but
larger y-coordinate). Since q ∈ C1, but q′ 6∈ C1, the segment qq′ must intersect
the boundary of C1. The segment has length qq′ at most δd(S∩R) 6 δ(d(C1)+
w(C2)) 6 5

4
δd(C1) 6 1

128
εw(C1). If it intersects the lower boundary of C1, we

are done: the boundary must pass above q′ but below q, and therefore it must
intersect the horizontal line through q to the left of q, at a distance smaller
than the distance between q and q′, which is less than εd(C1)/32.
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This leaves the case where qq′ intersects the upper boundary of C1. Let u be
the point of intersection, and let ` be a tangent to C1 in u. Since the length of
qq′ is less than 1

8
w(C1) and q ∈ S, we have u ∈ R′. As we observed before, this

implies that ` has absolute slope at least 1
4

w(C1)
d(C1)

. This implies that ` intersects

the horizontal line through q in a point u′ at distance at most εd(C1)/32
from q, see Figure 7. Since C1 lies below the line `, the boundary of C1 must
intersect the horizontal line through q between q and u′, implying the claim,
and therefore the lemma. 2

p

q

q′

S

u

`

u′

6 εd(C1)/32

Fig. 7. dist(u′, q) 6 εd(C1)/32.

We can now describe the algorithm in detail. We start by computing the
diameter, width, and a spine of both polygons, in total time O(n). Without
loss of generality, let w(Q) 6 w(P ). If w(Q) 6 w(P )/4 and d(Q) 6 d(P )/2,
then using Lemma 5 we compute in O(n) time a rectangle rP ⊂ P with edge
lengths w(Q) and d(Q). By Lemma 1 we can also find in O(n) time a rectangle
RQ that is circumscribed to Q and has edge lengths w(Q) and dQ 6 d(Q). In
constant time, we can find a rigid motion ϕopt such that ϕoptRQ ⊂ rP , and
hence ϕoptQ ⊂ P , which is optimal.

If this is not the case, we sample orientations of P at an interval of ∆ε, where

∆ :=
1

160

w(P )

min{d(P ), d(Q)} ,

but omitting all orientations where the angle ϑ of the spines of P and Q is
such that sin ϑ > 1280∆. This results in a set of O(1/ε) orientations of P . For
each of these, we compute the optimal translation using Lemma 9, and retain
the best rigid motion found as ϕapp.

The running time of this procedure is O((n log n)/ε), and it remains to prove
the approximation bound. By Lemma 7, the spines of ϕoptP and Q make an
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angle ϑ with

sin ϑ 6 8
w(P )

min{d(P ), d(Q)} = 1280∆,

and so we know that we are sampling an orientation of P at an angle δ 6 ∆ε/2
from the orientation of ϕoptP .

If w(Q) > w(P )/4, then

∆ =
1

160

w(P )

min{d(P ), d(Q)} <
1

40

w(Q)

min{d(P ), d(Q)} <
1

4π

w(Q)

min{d(P ), d(Q)} ,

and so δ 6 ∆ε fulfills the assumption of Lemma 10, implying the approxima-
tion bound.

If w(Q) 6 w(P )/4, then we have already excluded the case d(Q) 6 d(P )/2.
We therefore have min{d(P ), d(Q)} > d(P )/2, which implies

∆ =
1

160

w(P )

min{d(P ), d(Q)} <
2

160

w(P )

d(P )
.

Since δ 6 ∆ε/2, the assumptions of Lemma 11 are fulfilled, and the approxi-
mation bound follows.

Lemma 12 Given two convex polygons P and Q with n vertices in total,
and an ε > 0, we can compute a rigid motion ϕapp such that |ϕappP ∩ Q| >
(1 − ε) maxϕ |ϕP ∩ Q|, where the maximum is taken over all rigid motions.
The running time is O((n log n)/ε).

4 Inner approximations of convex sets

To drastically improve the running time of the algorithm of the previous sec-
tion, and to apply it to non-polygonal convex sets, we will replace the given
convex sets by polygonal approximations whose size depends only on ε. For
two sets A and B such that A ⊂ B, the Hausdorff-distance between A and B
is dH(A,B) := maxb∈B{mina∈A dist(a, b)}.

Given a convex set C, there is a classic inner approximation Pε ⊂ C by Dud-
ley [9] with O(1/

√
ε) vertices such that the Hausdorff-distance of Pε and C

is at most εd(C). Ahn et al. [1] showed that Dudley’s method can be imple-
mented in O(TC/

√
ε) time.

The bound on the Hausdorff-distance guarantees that C \Pε is “narrow.” We
will need the stronger property that every component of C \Pε is small in any
direction.

13
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Fig. 8. Inner approximation of a convex shape.

Lemma 13 Given a convex set C in the plane and ε > 0, one can construct
in time O(TC/ε) a convex polygon P ⊂ C with O(1/ε) vertices such that any
line ` intersects C \ P in at most two segments of length at most εd(C).

PROOF. We start by computing an axis-parallel square R circumscribed to
C (that is, C touches two opposite sides of R), see Figure 8. This can be
done using four extreme point queries. The side length of R is denoted by
d, and d 6 d(C). We then partition R with 2

√
2/ε equally spaced horizontal

and vertical lines at a distance of εd/
√

2, compute the intersection points of
all these lines with bd(C), and let P be the convex hull of these points. Any
connected component of C \ P is contained in a square cell of diameter εd,
implying the lemma. 2

While the lemma guarantees a stronger approximation, it needs far more ver-
tices than Dudley’s method. The bound of Θ(1/ε) vertices is tight, however,
as can easily be seen by considering the case of a circle.

In our second approximation, we return to the Hausdorff-distance, but re-
quire that it be less than εw(C) (instead of εd(C) as guaranteed by Dudley’s
method). A similar lemma was already proven by Ahn et al. [1] for polygons.
We give a proof for arbitrary convex sets C, and a formulation that makes it
easy to bound the area of the difference C \ P .

Lemma 14 Given a convex set C in the plane and ε > 0, one can construct
in time O(TC/ε) a convex polygon P ⊂ C with O(1/ε) vertices and a line `

14



such that any line `′ parallel to ` intersects C \ P in at most two segments of
length at most εw(C).

PROOF. We first compute the rectangle R as in Lemma 4. We now use an
orthonormal basis where the x-axis is parallel to the longer side of R. The
boundary of C consists of two y-monotone chains Cl and Cr. We will select
points on these chains to form the set of vertices of P . We select the lowest and
highest point (that is, the point with smallest and largest y-coordinate), as
well as the leftmost point of Cl and the rightmost point of Cr. We also ensure
that any two consecutive vertices of P have vertical distance at most εw(C).
This immediately implies that any vertical line intersects C \ P in segments
of length at most εw(C).

By Lemma 4, the shorter side of R has length at most 2
√

2w(C). We can there-
fore cover R by 2

√
2/ε horizontal lines equally spaced at distance εw(C). We

compute the intersection points of these lines and bd(C), in time O(TC/ε). 2

As before, this approximation requires Θ(1/ε) vertices, instead of the Θ(1/
√

ε)
vertices sufficient for Dudley’s method. Again, the bound is tight, as the fol-
lowing lemma shows.

Lemma 15 For all integers n > 4, there exists an n-gon Pn such that, for any
k-gon Q contained in Pn with dH(Q,Pn) 6 w(Pn)/5n, we have k > (n− 3)/2.

PROOF. Let vi be the point with coordinates (2i, i), for integers 0 6 i <
n − 1, let vn−1 = (2n−2, 0), and let Pn be the convex hull of {vi | 0 6 i < n}.
Note that the width of Pn is less than n−2. We assume that Q ⊂ Pn is a convex
k-gon such that dH(Q,Pn) 6 w(Pn)/5n, so in particular dH(Q,Pn) < 1/5.

For 0 < i < n − 2, let di denote the distance between the vertex vi and the
line segment vi−1vi+1. We observe that the distance between vi and the point
of the segment vi−1vi+1 with the same x-coordinate is 1/3. Since the slope of
vi−1vi+1 is less than 1, it follows that di is at least 1/(3

√
2), so di > 1/5. Now

suppose that no vertex of Q lies in the interior of some triangle vi−1vivi+1.
Then the distance between vi and Q is at least di > 1/5, a contradiction.
Therefore, for all 0 < i < n − 2, there is a vertex of Q in the interior of the
triangle vi−1vivi+1. The triangles vi−1vivi+1 where i is odd and 0 < i < n− 2
have disjoint interiors, and there are at least (n − 3)/2 such triangles, so Q
has at least (n− 3)/2 vertices. 2

15



5 Putting it all together

Our main theorem is the following.

Theorem 16 Given two convex sets C1 and C2 in the plane and α > 0, we
can compute in time O((TC1 + TC2)/α + (1/α2) log(1/α)) a rigid motion ϕapp

such that the area of ϕappC1 ∩ C2 is at least 1 − α times the maximum over
all rigid motions.

PROOF. We start by computing circumscribed rectangles Ri for Ci accord-
ing to Lemma 4, for i = 1, 2. Let di > wi be the sides of Ri. By Lemma 4 we
have

d(Ci)/
√

2 6 di 6 d(Ci),

w(Ci) 6 wi 6 2
√

2w(Ci).

Let c := 3
√

2. If d1 > cd2 and w1 > cw2, then we use Lemma 4 to compute
a homothet r1 of R1 that is contained in C1 and has side lengths d1/c > d2

and w1/c > w2. In constant time we can find a rigid motion ϕ such that
R2 ⊂ ϕr1. It follows that C2 ⊂ ϕC1, so ϕ is an optimal solution with value
|C2| = min(|C1|, |C2|).

We can handle the case where d2 > cd1 and w2 > cw1 in the same way, so in the
following, we assume that (d2 < cd1 or w2 < cw1) and (d1 < cd2 or w1 < cw2).
Without loss of generality, we assume that d2/w2 > d1/w1 (otherwise we swap
C1 and C2). This implies that w2 6 cw1 (if w2 > cw1 then d2 < cd1, which
implies d2/w2 < d1/w1) and d1 6 cd2 (if d1 > cd2 then w1 < cw2, which
implies again d2/w2 < d1/w1). Therefore d1w2 6 d2w1, d1w2 6 cd2w2, and
d1w2 6 d1cw1, so

d1w2 6 c min{d1, d2}min{w1, w2}
6 2c

√
2 min{d(C1), d(C2)}min{w(C1), w(C2)}.

Choosing ε = α/(128c + 1), we compute the approximation P1 of Lemma 13
for C1, the approximation P2 of Lemma 14 for C2, and then compute the rigid
motion ϕapp of Lemma 12 such that

|ϕappP1 ∩ P2| > (1− ε) max
ϕ
|ϕP1 ∩ P2|.

The total running time is O((TC1 + TC2)/ε + (1/ε2) log(1/ε)), and since α =
Θ(ε), it is also O((TC1 +TC2)/α+(1/α2) log(1/α)). So it only remains to prove
that this choice of ϕapp provides the desired approximation.
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Let ϕopt be a rigid motion such that

|ϕoptC1 ∩ C2| = max
ϕ
|ϕC1 ∩ C2|.

We will show below that, for any rigid motion ϕ,

|ϕP1 ∩ P2| > |ϕC1 ∩ C2| − 128cε|ϕoptC1 ∩ C2|. (1)

We then have

max
ϕ
|ϕP1 ∩ P2| > |ϕoptP1 ∩ P2|

> |ϕoptC1 ∩ C2| − 128cε|ϕoptC1 ∩ C2|.

By Lemma 12, we have

|ϕappC1 ∩ C2|> |ϕappP1 ∩ P2|
> (1− ε) max

ϕ
|ϕP1 ∩ P2|

= max
ϕ
|ϕP1 ∩ P2| − ε max

ϕ
|ϕP1 ∩ P2|

> max
ϕ
|ϕP1 ∩ P2| − ε max

ϕ
|ϕC1 ∩ C2|

= max
ϕ
|ϕP1 ∩ P2| − ε|ϕoptC1 ∩ C2|

> |ϕoptC1 ∩ C2| − 128cε|ϕoptC1 ∩ C2|
−ε|ϕoptC1 ∩ C2|

= |ϕoptC1 ∩ C2| − (128c + 1)ε|ϕoptC1 ∩ C2|
= (1− α)|ϕoptC1 ∩ C2|.

It remains to prove the claim (1) above for a rigid motion ϕ.

Let D1 := (ϕC1 \ ϕP1) ∩ C2. By Lemma 13, any line ` parallel to the longer
side of R2 intersects D1 in at most two segments of length at most εd(C1).
Integrating over the shorter side of R2, we find |D1| 6 2εw2d(C1).

Let D2 := (C2 \ P2) ∩ ϕC1. By Lemma 14, there is a line ` such that any
line `′ parallel to ` intersects D2 in at most two segments of length at most
εw(C2) 6 εw2. Since d(D2) 6 d(C1), it suffices to integrate over an interval of
length d(C1) to obtain |D2| 6 2εw2d(C1).

Since (ϕC1 ∩ C2) \ (ϕP1 ∩ P2) ⊂ D1 ∪D2, we have
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|(ϕC1 ∩ C2) \ (ϕP1 ∩ P2)|6 |D1 ∪D2| 6 |D1|+ |D2|
6 4εw2d(C1) 6 4

√
2εd1w2

6 4
√

2ε2c
√

2

×min(w(C1), w(C2))

×min(d(C1), d(C2))

6 128cε|ϕoptC1 ∩ C2|.

The last inequality is due to Lemma 6. This implies
|ϕP1 ∩ P2| > |ϕC1 ∩ C2| − 128cε|ϕoptC1 ∩ C2|, completing the proof. 2

6 Translations only

With the same techniques, we can also handle the case where the rigid motion
is restricted to be a translation τ . The key idea is to first apply an affine trans-
formation that makes C2 fat. Once we have that, we apply the approximation
of Lemma 13 to C2 and the approximation of Lemma 14 to C1. This does not
decrease the area of overlap by more than α of the optimum, and so we can
finally use Lemma 9 on the approximations. The proof is very similar to the
proof of Theorem 16.

Theorem 17 Given two convex sets C1 and C2 in the plane and α > 0, we
can compute in time O((TC1 + TC2)/α + (1/α) log(1/α)) a translation τ app

such that the area of τ appC1 ∩C2 is at least 1−α times the maximum over all
translations.

PROOF. We first compute the two rectangles r2 ⊂ C2 ⊂ R2 of Lemma 4.
There is an affine transformation f that maps r2 to the unit square. Since
f preserves area ratios, our problem is equivalent to finding an approximate
maximum overlap of f(C1) and f(C2) under translation. So in the remainder of
this proof, we will assume, without loss of generality, that r2 ⊂ C2 ⊂ R2 where
r2 is the unit square and R2 is an axis–parallel square with side length 3

√
2.

We now compute the two homothetic rectangles r1 ⊂ C1 ⊂ R1 of Lemma 4.
We denote by w1 6 d1 the lengths of the sides of R1.

If d1 6 1/
√

2, then we can find in constant time a translation τ such that
τR1 ⊂ r2. Therefore τC1 ⊂ C2, and we can choose τ app = τ . So from now on
we assume that d1 > 1/

√
2, which implies d(C1) > 1/

√
2.

On the other hand, suppose that w1 > 18
√

2. Then the shorter side of r1 has
length w1/(3

√
2) > 6. So we can find in constant time a translation τ such
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that R2 ⊂ τr1. Therefore C2 ⊂ τC1, and we can again choose τ app = τ . So
from now on we assume that w1 < 18

√
2, which implies w(C1) < 18

√
2.

We fix ε = α/(432
√

2). We apply Lemma 14 to C1, so we obtain an ε–
approximating polygon P1. We apply Lemma 13 to C2 and obtain an ε–
approximating polygon P2. Notice that until now we have spent only O((TC1 +
TC2)/α) time. Now we apply Lemma 9 and find the translation τ app that max-
imizes |τ appP1 ∩ P2|. This takes time O((1/α) log(1/α)). Let τ opt be a rigid
motion such that

|τ optC1 ∩ C2| = max
τ
|τC1 ∩ C2|.

We will show below that, for any translation τ ,

|τP1 ∩ P2| > |τC1 ∩ C2| − α|τ optC1 ∩ C2|. (2)

We then have

|τ appC1 ∩ C2|> |τ appP1 ∩ P2| > |τ optP1 ∩ P2|
> |τ optC1 ∩ C2| − α|τ optC1 ∩ C2|,

and thus we proved that τ app provides the desired approximation.

It remains to prove Claim (2). By Lemma 5, C1 contains a rectangle r with
sides d(C1)/2 and w(C1)/4. If w(C1) > 4

√
2, then both sides of r have length

at least
√

2, and so there is a translation that maps r such that it covers r2.
This implies that

|τ optC1 ∩ C2| > |r2| = 1 > w(C1)

18
√

2
.

If, on the other hand, w(C1) < 4
√

2, then we consider a smaller rectangle r′

with sides 1/2
√

2 and w(C1)/8 contained in r. Since both sides of r′ have
length at most 1/

√
2, there is a translation that maps r′ inside r2, which

implies again that

|τ optC1 ∩ C2| > |r′| = 1

2
√

2
× w(C1)

8
>

w(C1)

18
√

2
(3)

Let D1 := (τC1 \ τP1) ∩ C2. By Lemma 14, there is a line ` such that any
line `′ parallel to ` intersects τC1 \ τP1 in at most two segments of length at
most εw(C1). Since d(C2) 6 6, it suffices to integrate over an interval of length
d(C2) to obtain |D1| 6 12εw(C1).

Let D2 := (C2 \P2)∩τC1. Let R be a bounding rectangle of τC1 with one side
length equal to w(C1). By Lemma 13, any line ` parallel to the longer side
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of R intersects D1 in at most two segments of length at most εd(C2) 6 6ε.
Integrating over the shorter side of R, we find |D2| 6 12εw(C1).

Since (τC1 ∩ C2) \ (τP1 ∩ P2) ⊂ D1 ∪D2, we have

|(τC1 ∩ C2) \ (τP1 ∩ P2)| 6 |D1 ∪D2| 6 24εw(C1).

By Equation (3), it yields

|(τC1 ∩ C2) \ (τP1 ∩ P2)| 6 α|τ optC1 ∩ C2|,

which completes the proof of Claim (2). 2
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