
Covering a Simple Polygon by Monotone Directions∗

Hee-Kap Ahn† Peter Brass‡ Christian Knauer§ Hyeon-Suk Na¶

Chan-Su Shin‖

January 11, 2009

Abstract

In this paper we study the problem of finding a set of k directions for a given simple
polygon P , such that for each point p ∈ P there is at least one direction in which the line
through p intersects the polygon only once. For k = 1, this is the classical problem of
finding directions in which the polygon is monotone, and all such directions can be found
in linear time for a simple n-gon. For k > 1, this problem becomes much harder; we give
an O(n5 log2 n)-time algorithm for k = 2, and O(n3k+2)-time algorithm for k ≥ 3.

1 Introduction

Background A polygon P is said to be monotone in a direction α if every line in direction α
intersects P in at most one connected component. Determining if a given polygon is monotone
is a well-studied problem. Preparata and Supowit [7] presented a linear time algorithm to find
all directions in which a given polygon is monotone. Bose and Kreveld [1] studied rotational
plane sweep on a simple polygon with the restriction that the sweep line intersects the polygon
in at most one connected component.

In this paper we consider a generalization of the monotonicity problem: given a simple
polygon P , find a set D of k directions such that each point p ∈ P is covered by at least
one direction of D, in the sense that the line through p in this direction intersects P in one
connected component. We call a simple polygon having such a set D of k directions k-monotone
for D. Figure 1 illustrates some examples of polygons; the polygon in (a) is 1-monotone for the
vertical direction, the polygon in (b) is not 1-monotone but 2-monotone for the horizontal and
the vertical directions, and the polygon in (c) is not k-monotone for any k ≥ 1 since any line
through a point in the gray region intersects the polygon in at least two connected components.

To our best knowledge, no related work has been done so far, except those of [7] and [1]
introduced above. Since every 1-monotone polygon is decomposable into two monotone chains,
one may think that decomposing the boundary of a simple polygon into k monotone chains is

∗Work by Ahn was supported by the Postech BSRI Research Fund–2008. Work by Na was supported by
Korean Research Foundation Grant(KRF-2007-531-D00018). Work by Shin was supported by Korean Research
Foundation Grant(KRF-2006-311-D00764).

†Department of Computer Science and Engineering, POSTECH, Korea. heekap@postech.ac.kr
‡Department of Computer Science, City College, New York, USA. peter@cs.ccny.cuny.edu
§Institute of Computer Science, Free University Berlin, Germany. knauer@inf.fu-berlin.de
¶Corresponding author. School of Computing, Soongsil University, Seoul, Korea. hsnaa@ssu.ac.kr
‖School of Electrical and Information Engineering, Hankuk University of Foreign Studies, Korea.

cssin@hufs.ac.kr

1



(a) (b) (c)

Figure 1: The polygon is (a) 1-monotone for the vertical direction, (b) 2-monotone for the
horizontal and the vertical directions, (c) not k-monotone for any k ≥ 1.

relevant to k-monotonicity. Indeed, decomposing the boundary of a simple polygon into some
specific polygonal chains has been studied to determine the moldability and the castability of
a polygon; Rappaport and Rosenbloom [8] gave a linear time algorithm to determine whether
the boundary of a simple polygon can be decomposed into two monotone chains, where the two
chains are not necessarily monotone in the same direction. Bose et al. [2] studied different type
of decomposition of the boundary of a polygon; given a center r, one chain can be rotated in
clockwise direction around r and the other can be rotated in counterclockwise direction around
r, without either chain penetrating the interior of the polygon. However, these decompositions
are barely related to k-monotonicity. For instance, some 2-monotone polygons like Figure 1(b)
are not decomposable into two monotone chains, and some polygons decomposable into two
monotone chains are not 2-monotone.

Monotonicity of three dimensional polyhedron was introduced by Toussaint [9], and studied
by Bose and Kreveld [1], and Ha et al. [4].

Summary of results. We obtain the following results.

Theorem 1 Given a direction α and a simple polygon P with n vertices, we can test in
O(n2 log2 n) time if there is a direction β such that P is 2-monotone for {α, β}. We return all
directions β such that P is 2-monotone for {α, β} in the same time.

Theorem 2 Given a simple polygon P with n vertices in general position, we can find in
O(n5 log2 n) time all pairs of two directions for which P is 2-monotone. If no such pair is
found, then P is not 2-monotone.

Theorem 3 Given a fixed number k ≥ 3 and a simple polygon P with n vertices, we can find
in O(n3k+2) time all sets of k directions for which P is k-monotone. If no such set is found,
then P is not k-monotone.

The remainder of this paper is organized as follows: We first consider the case k = 2 in
Section 3. In Sections 3.1 and 3.2, we give algorithms proving Theorems 1 and 2, respectively.
We then consider the general case k ≥ 3 and give an algorithm for Theorem 3 in Section 4.

2 Preliminaries

Throughout this paper, P = (v1, . . . , vn) is a simple polygon with n vertices v1, . . . , vn ordered
counterclockwise. We denote by ∂P the boundary of the polygon P . We regard directions as
the angles in the range [0, π) measured from the positive x-axis.

2



There are three different notations of a line: we use `(p, q) to denote the line through two
points p and q, `(e) to denote the line containing an edge or a segment e, and `γ(p) to denote
the line through p in direction γ. We use pq to denote the line segment connecting two points
p and q. Note that a line defines a direction (or an angle) in the angle range [0, π). Similarly,
an edge on ∂P or a segment defines a direction in the angle range. We say that a direction γ
covers a point p in P if `γ(p) intersects P in one connected component.

v

u

u
′

ℓα(v)

ℓβ(u)

u u
′

v

ℓβ(u′)

α

(a) (b)

Figure 2: There is only one pair of directions for which the polygon is 2-monotone. These
directions are not defined by edges or pairs of vertices.

Before proving the results, we show that the candidate directions for which a polygon is
2-monotone are not necessarily directions defined by edges or pairs of vertices of P . Consider
a polygon with three reflex vertices u, u′ and v as in Figure 2(a). To cover the points in the
neighborhood of u, we must set one of two directions, say α, to lie in the exterior angular
range between two edges incident to u. Indeed, any α in the range covers the whole polygon,
except the points in the gray region lying below `α(v), as shown in Figure 2(b). If there is a
second direction that covers this gray region, then the polygon is 2-monotone. For some fixed
α in that range, let β be the direction defined by u and the intersection of `α(v) with the edge
immediately to the left of v on `α(v). Now place the third reflex vertex u′ so that u′ lies on the
line in direction β passing through the intersection of `α(v) with the edge immediately to the
right of v on `α(v). Then it is not difficult to see that the polygon is 2-monotone for {α, β}.
Clearly, these directions are not defined by any edges or pairs of vertices. Moreover, it is the
only pair of directions for which the polygon is 2-monotone: for any other α within the range
(induced by u), its correspondingly defined β cannot cover the region of P lying below `α(v),
with the infinite strip between `β(u) and `β(u′), as shown in Figure 2(b), and thus no β can
cover the region of P lying below `α(v).

3 Monotonicity for two directions

Given a direction α, let Pα be the set of points p ∈ P such that `α(p) ∩ P is one connected
component. Then Pα is a collection of parallel strips to α, called α-good strips, and P \ Pα is
separated by the α-good strips into α-bad strips such that every line of direction α within this
strip intersects P in more than one component. As in Figure 3, α-good strips and α-bad strips

3



appear alternately along the perpendicular direction of α and the number of such strips is at
most n. An α-bad strip may contain O(n) components of P \ Pα, called α-bad components,
but in total the number of α-bad components of P is at most O(n) since the vertices of α-bad
components are either the endpoints of α-good strips or the vertices of P . If we assume that the
vertices of P are in general position (no three vertices of P are collinear), then an α-bad strip
can contain only O(1) components. Finally, note that α-bad components are not necessarily
closed sets (containing the boundary in the sets) and that closures of two α-bad components in
an α-bad strip can intersect only once at a reflex vertex of Pα in the top or bottom side of the
strip. See Figure 3. For the horizontal direction α, this polygon has two α-bad strips and four
α-bad components S1 . . . , S4. The dashed line segments on the boundary of α-bad components
are not contained in their α-bad components. The closures of S1 and S2 are completely disjoint
and the closures of S3 and S4 intersect at a reflex vertex u′′ ∈ Pα in the top.

v

p

S4

u′

w′

w′′

s
t

S2

S3

S1

w

u

u′′

v′

Figure 3: α-bad components S1, . . . , S4.

If P is 2-monotone for α and some other direction β, every point p of α-bad components
must be covered by β, that is, `β(p) must intersect P in one connected component. Thus we
first consider the problem of finding a second direction β for given α such that all points of
α-bad components are covered by β. We then consider the more general problem of finding two
directions {α, β} for which P is 2-monotone.

3.1 Finding a direction β for a fixed direction α

In this section, we describe an algorithm to solve the following problem: given a direction α,
decide whether there is a direction β such that P is 2-monotone for {α, β}. In fact, we will
solve the more general problem of finding all directions β such that P is 2-monotone for {α, β}.

We first compute all α-bad components by a plane sweep method in O(n log n) time. The
second direction must cover all points in the α-bad components. We say a direction β is
forbidden if there is a point p in an α-bad component such that `β(p) intersects P in more than
one connected component. If we compute the union of all forbidden directions, then we can
solve the problem by checking if the union is the whole angle space. If the union is the whole
angle space, there is no valid second direction.

In the sequel, we will define an angle interval fα(S, v) of forbidden directions for each pair
(S, v) of an α-bad component S and a reflex vertex v of P . In Lemma 4 we will show that the
union of fα(S, v) for all pairs (S, v) is equal to the union of all forbidden directions. Without
loss of generality, we assume that α is the horizontal direction.

4



Forbidden intervals. Given a pair (S, v) of an α-bad component S and a reflex vertex
v of P , we define an angle interval fα(S, v) of forbidden directions. Let e1 and e2 be the
edges incident to v, where e1 appears right before e2 in counterclockwise orientation of ∂P .
Two extensions `(e1) and `(e2) partition the region around v into four wedges as shown in
Figure 4(a); the one intersecting the exterior of P locally around v is denoted by W4(v), and
by W2(v) its diagonal wedge. The remaining two wedges are denoted by W1(v) and W3(v),
where W1(v),W2(v),W3(v),W4(v) are ordered in counterclockwise around v. The union of two
wedges W1(v) and W3(v) forms a double wedge W13(v). Depending on the geometric relation
between the wedges and S, we define the following three types of forbidden intervals.

e1

e2

v

S

e1

e2

v

S

v′

(a) Definition of R(S, v) (b) Type B (c) Type C

e1
v

S

v′

W2(v)

W1(v)

W4(v)

W3(v) R(S, v)

ℓ ℓ

p

q

Figure 4: Forbidden intervals of Type B and Type C.

Type A: This is the case that v ∈ S. Let fα(S, v) be the (open) angle interval of W13(v). Then
any direction β ∈ fα(S, v) is forbidden because we can translate the line `β(v) slightly so
that it intersects both edges e1 and e2 incident to v and still passes through some point
of P ; thus this line in direction β intersects P in two or more components. For instance,
in Figure 3 the vertices s and t define forbidden intervals of Type A for the same α-bad
component S2.

For the other two types, assume that v 6∈ S.

Type B: This is the case that S ∩ W2(v) = ∅ as in Figure 4(a) and 4(b). Let ` be the line
through v and tangent to S such that e1 and S lie in the same side of `. Let v′ be the first
intersection of the ray from v along ` with ∂P (see Figure 4(a)). Then the segment vv′
cuts P into two pieces, and we denote the one not intersecting S by R(S, v). No point of
R(S, v) is visible from any point of S, that is, for any points p ∈ S and q ∈ R(S, v), `(p, q)
intersects P in more than one connected component and the direction is forbidden. So we
take the double wedge containing R(S, v) and S, whose boundaries are two inner tangent
lines between them (see Figure 4(b)). We set fα(S, v) to be the (open) angle interval of
this double wedge, including the endpoint (direction) corresponding to the inner tangent
pq if the tangent point p is contained in S.

Type C: This is the case that S ∩W2(v) 6= ∅ (see Figure 4(c)). Define fα(S, v) as the (open)
angle interval of directions β such that `β(v) lies in the double wedge W13(v) and intersects
S. Note that if `(e1) and `(e2) both intersect S, then fα(S, v) consists of two sub-intervals.

5



Also, if S is contained in W2(v), then fα(S, v) = ∅. Using the translation argument used
in the definition of Type A, we can prove that every direction in fα(S, v) is forbidden.

Let Fα be the union of fα(S, v) for all pairs of α-bad components S and reflex vertices v of
P .

Lemma 4 The set Fα is the union of all forbidden second directions.

Proof. We have seen in the type definition that any direction in Fα is forbidden, so what
remains is to show that any forbidden direction for points in α-bad components is contained
in Fα. Let β be a forbidden second direction. Then there is a point p in an α-bad component
S such that the line `β(p) intersects P in more than one component. Among the intersection
points between `β(p) and ∂P , let q be the closest point from p that are not visible from p, and
let p′ be the closest point of ∂P from p lying on pq (see Figure 5(a)). Note that p′ and p may
be identical.

We now consider the geodesic shortest path from p to q in P . Since q is not visible from p,
it consists of more than one component and all its vertices, except p and q, are reflex. Let v
be a reflex vertex in the path such that `β(v) is tangent to the path. Then β is contained in
the interior of W13(v) since both edges incident to v lie in the same side of `β(v). We have two
cases depending on whether q is in S or not.

e

(a)

v

(b)

p′
p

q

X

ℓβ(v)

e1

e2

ℓβ(v)

v

SpS
p

ℓβ(v)

v

q

(c)

R(S, v)

p′

ℓβ(p)

W2(v)

Figure 5: Illustration of the proof of Lemma 4.

Case 1: q is in S. In this case, we claim that the geodesic path from p to q must be contained
in S. Then v is in S and the pair (S, v) defines the forbidden interval fα(S, v) of Type A. Since
β lies in the interior of W13(v), β is contained in this fα(S, v).

To prove the claim, we denote by X the closure of the α-bad strip containing S and show
that the geodesic path from p to q lies in X. Since α is horizontal, all we need is to show that
the extreme points in y-coordinate along this path are contained in X. Let v′ be an extreme
point in y-coordinate along the geodesic path. Then v′ must be contained in X; since otherwise
v′ must lie strictly above (or strictly below) X and any horizontal line lying between X and v′

intersects P in more than one connected component, contradicting the fact that the strip right
above (or right below) X is an α-good strip. Thus the geodesic path from p to q is contained
in X.

Now remind that within the strip X, closures of any two bad components are either com-
pletely disjoint or can intersect only once at a reflex vertex of Pα. So, if the geodesic path lying
in X and starting and ending at points of S were not contained in S, the path must go out to a

6



neighboring component S′ through a reflex vertex and then come back through a reflex vertex
from some component S′′. Since the path is geodesic, the outgoing and incoming vertices must
be distinct and thus S′ and S′′ are different components both adjacent to S, which implies that
closures of α-bad components S′ and S′′ are completely disjoint and cannot be connected by a
path in X. Therefore the geodesic path starting and ending at p, q ∈ S cannot leave S.

Case 2: q is not in S. In this case, if S∩W2(v) = ∅, then R(S, v) is defined (see Figure 5(b)).
Since q is the closest point invisible from p among the points in `β(p) ∩ ∂P , one portion of ∂P
between p′ and q is completely enclosed by the segment pq and the geodesic path from p to q.
Note that v lies between p′ and q along that portion. Thus q lies on the boundary of R(S, v),
and the direction β of pq for p ∈ S and q ∈ R(S, v) is contained in fα(S, v) of Type B.

Now if S ∩ W2(v) 6= ∅, then the interior of S must intersect the line `β(v) since `β(v)
separates p ∈ S and W2(v) (see Figure 5(c)). So β is contained in fα(S, v) of Type C.

This completes the proof of Lemma 4.

Computing Fα. We now describe how to compute Fα. To answer the visibility queries
quickly, we preprocess P in O(n log n) time so that ray shooting queries can be answered in
O(log n) time [5]. In addition, we construct a data structure on the vertices v1, . . . , vn of P
in O(n log n) time such that for each pair (i, j) with i < j, the convex hull of the vertices
{vi, vi+1 . . . , vj} can be (implicitly) constructed in O(log2 n) time [6].

We first compute all the α-bad components S and their convex hulls CH(S) by a plane
sweep algorithm. This takes O(n log n) time since the total complexity of the components is
linear. Next, we compute fα(S, v) for each pair of an α-bad component S and a reflex vertex v
of P as follows: The type of fα(S, v) can be determined in O(log n) time, by checking if v is in
S and then if the extension of the incident edges of v intersects S. Depending on the type of
fα(S, v), we use different methods as follows:

Type A: fα(S, v) is the (open) angle interval of W13(v) and thus can be computed in O(1)
time.

Type B: We need to compute R(S, v) and two inner tangent lines between R(S, v) and S,
as in Figure 4(b). To do this, we first compute two tangent lines from v to CH(S) in
O(log n) time. To determine the cutting segment vv′ that defines R(S, v), we perform a
ray shooting query from v along one of the two tangent lines in O(log n) time. If v′ is
a point on the edge (vi, vi+1) and v is equal to vj for i < j, we determine the convex
hull CH(R(S, v)) of {vi+1, . . . , vj} ∪ {v′} in O(log2 n) time, by inserting v′ into the pre-
computed convex hull of {vi+1, . . . , vj}. We then compute the two tangents between
CH(R(S, v)) and CH(S) in O(log n) time by binary searching.

Type C: We only need to compute the tangents from v to CH(S) in O(log n) time by binary
searching.

For each pair (S, v), we compute fα(S, v) in O(log2 n) time, so computing all such intervals
takes O(n2 log2 n) time. Finally we compute the union of all forbidden intervals in O(n2 log n)
time, by using a simple greedy algorithm after sorting the interval endpoints, and check if the
union is the whole angle space in O(1) time. This completes the description of the algorithm
and the proof of Theorem 1.

7



3.2 Finding two directions α and β

This section is devoted to the proof of Theorem 2: for given simple polygon P with n vertices
in general position, compute in O(n5 log2 n) time all pairs {α, β} of two directions for which P
is 2-monotone.

We initially set α to be the horizontal direction, and compute the interval system Fα by
the procedure described in Section 3.1. We then perform a sweep over the angle space of α in
counterclockwise direction, and maintain the system Fα during the sweep. Of course, since the
exact values of the interval endpoints change continuously during the angular sweep, what we
maintain is the combinatorial description of the intervals of Fα, that is, the ordered sequence
of the interval endpoints.

Lids and owners. Let S be an α-bad component of P . The boundary between S and its
neighboring α-good strip is a line segment in direction α, which we call a lid of S. Then S has
two (top and bottom) lids, possibly of zero length. On the supporting line of each lid, there
must be some vertex v of P , called the owner of the lid, such that `α(v) intersects only the
exterior or only the interior of P in the neighborhood of v. (If more than one vertex satisfy
this condition, the leftmost vertex for the top lid and the rightmost vertex for the bottom lid
must be chosen for the owner since we sweep the angular space in counterclockwise direction.)
In Figure 3, the top and bottom owners of S1, S2, and S3 are u and w, u and w′, and u′′ and
w′′, respectively.

Let T (α) be the set of endpoints of the lids of all α-bad components in P , and V the set of
vertices of P . Then we can prove the following:

Lemma 5 Let S be an α-bad component and v be a reflex vertex of P . The endpoints of the
forbidden interval fα(S, v) are defined by a pair of points from V ∪ T (α).

Proof. The endpoints of fα(S, v) correspond to one of the followings: (i) lines extending the
incident edges of v, or (ii) tangent lines between R(S, v) and S, or (iii) tangent lines between
S and v. Endpoints in (i) are defined by points from V , so consider the other two cases. For
every tangent line between S and R(S, v) or between S and v, its tangential points are either
vertices of P (thus in V ) or endpoints of lids of S, thus its direction is defined by a pair of
points from V ∪ T (α).

Data structures. As mentioned before, we maintain Fα during the angular sweep of α.
Lemma 5 implies that what we need to maintain are: (i) the owners, lids, and convex hull
of every α-bad component S, (ii) the convex hull of R(S, v) for every pair (S, v) of an α-
bad component S and a reflex vertex v that defines R(S, v), and finally (iii) all generating lines
defined by pairs of points from V ∪T (α). Dynamic data structures that can be used to maintain
them are:

• Fα: During the sweep, we maintain all forbidden intervals fα(S, v) and their union Fα,
using the data structure I, due to Cheng and Janardan [3]. This structure maintains
the union of a set of m intervals, under insertions and deletions of intervals in O(log m)
time. The union of the intervals can be listed in O(k) time, if there are k components. In
particular, it can be tested in O(1) time whether the union is trivial.

• S, R(S, v), CH(S) and CH(R(S, v)): Both S and R(S, v) can be represented as a simple
polygon with a set of vertices or lid-endpoints on the boundary in counterclockwise order.

8



The data structure C, due to Overmars and van Leeuwen [6], maintains the set of all
bad components S and R(S, v) where computing their convex hulls or answering various
queries (such as computing tangents) can be done in O(log2 n) time.

• Next event α: The standard priority queue Q is used to store the values of α at which
the interval system changes combinatorially. This queue is maintained dynamically in
O(log n) time per insertion and deletion.

Preprocessing. As a preprocessing step, we build a static data structure in O(n log n) time
that supports visibility queries in O(log n) time. This can be used when we need to determine
the first point at which a ray from a vertex of P hits ∂P . We build another data structure
of Overmars and van Leeuwen [6] in O(n log n) time that enables us to (implicitly) determine
the convex hull of {vi, . . . , vj} for any pair of vertices vi and vj in O(log2 n) time. Finally, for
each pair (vi, vj) of vertices of P , we compute the direction αij defined by them, and combine
it with the information about how the lines `α(vi) and `α(vj) change their α-goodness or α-
badness while moving from αij− ε to αij + ε. This information is used to determine the type of
component events that will be defined in the sequel. Using the first data structure for visibility
queries, we can complete this in O(n2 log n) time.

Events. We define two kinds of events at which the combinatorial structure of I or C changes.
The first kind of events, called component events, happens when a bad component is created,
deleted, split into two, or two bad components are merged into one, or the owners or lid-
endpoints of bad components are changed. Any of these events result in creation/deletion of
S and R(S, v) in C and creation/deletion of intervals in I. The second kind of events, called
interval events, happens when the combinatorial description of intervals in I changes.

(a) Component events: These events arise whenever the sweeping line passes through
a pair of vertices of P , i.e., α = αij and some combinatorial change in the dynamic structure
C are needed; such as creation, deletion, merging and splitting, or change of the owners or
lid-endpoints of bad components in C. For the vertices u and v on the sweeping line, denote
the left one by Left(u, v) and the right one by Right(u, v).

• Owner/Lid-endpoint Change: At α = αij , an α-bad component S can change the top
(resp. bottom) owner from vi to vj if both vi and vj stay in S and vj = Left(vi, vj) (resp.
vj = Right(vi, vj)). For instance, in Figure 3, the bottom owner of S2 is changed from w′

to t at the moment that α reaches the direction of `(w′, t). For this event, we just change
the owner of S in C.
An endpoint of a lid of S with owner vi moves from one edge to another incident to vj

if the status of `α(vj) stays at α-badness. For this event, we insert this vertex as a new
vertex into S of C and update all information relevant to CH(S).

• Creation/Deletion: At α = αij , a new α-bad component S is created if (i) vi and vj are
the endpoints of an edge in an α-good strip, and (ii) the status of one of `α(vi) and `α(vj)
is changed from α-goodness to α-badness. The pair (v, v′) in Figure 3 illustrates this
case; The status of `α(v) is changed from α-goodness to α-badness, while the status of
`α(vj) stays the same at α-goodness. Then a new bad component S with the top owner
Left(vi, vj) and the bottom owner Right(vi, vj) is created. Deletion proceeds exactly
inverse to creation: when the top and bottom owners of S become collinear.

9



• Split/Merge: At α = αij , an α-bad component S can be split into three bad components
S1, S2, and S3 if (i) vi is an owner of another component T and the status of `α(vi) stays
at α-badness, and (ii) vj was contained in S but not on the lids of S, and the status
of `α(vj) is changed from α-badness to α-goodness. For instance, in Figure 3, `(w, s)
splits S2 into three components. Then the top and bottom owners of S1 are the S’s top
owner and Left(vi, vj), respectively, and the top and bottom owners of S2 and S3 are
identically Right(vi, vj) and the S’s bottom owner, respectively. At this event, we remove
old component S and insert new components S1, S2 and S3 into C.
Merging components proceeds exactly inverse to splitting: when the S1’s bottom owner
Left(vi, vj) and the top owner Right(vi, vj) of S2 and S3 become collinear, three compo-
nents S1, S2, and S3 are merged into S.

Now we count the number of operations needed in C, I and Q by the component events. The
number of component events is O(n2) in total. Since the vertices of P are in general position,
each component event calls O(1) creation or deletion of bad components in C. Thus we execute
O(n2) creation or deletion of bad components in C in total. Creation or deletion of a bad
component causes O(n) insertion or deletion of R(S, v) in C and thus O(n) interval operations
in I and O(n) operations in Q. Therefore, the total number of operations in C, I and Q that
are caused by component events during the sweep of α is O(n3).

(b) Interval events: These events arise when the combinatorial structure of the interval
system in I changes. Every interval fα(S, v) = (xα, yα) in I is defined by two generating
lines `(xα) and `(yα), where xα and yα represent the endpoints of this interval. According to
Lemma 5, these lines `(xα) and `(yα) are determined by two points in V ∪ T (α). During the
sweep of α, the combinatorial change of the interval system in I arises in three different ways:

v

w

e

e1

e2

pv

α

α′

e
α1

α2

e′

CH(R(S, v))

q(xα)
e

α1

α3

CH(R(S, v))

q(xα)

CH(S)

u

CH(S)

α2

CH(S)

(a) (c)(b)

α3

tw(α)

Figure 6: Illustration of interval events.

• Type of fα(S, v) changes.

– Transition between Type A and Types B or C happens when α is equal to the
direction of one of the edges e1 and e2 incident to v. There are O(n) such directions.

– Transition from Type B to Type C occurs as follows: Assume that v is above S and
`(e1) intersects ∂P at edge e, as in Figure 6(a). Let pv := `(e1) ∩ e (i.e., pv is the
first intersection of the ray from v along `(e1) with ∂P ). Let w be the top owner of
S and tw(α) := `α(w) ∩ e. Let α′ be the direction of `(w, pv). As α approaches to
α′ in counterclockwise direction, tw(α) approaches pv. At the moment that α = α′,
i.e., that tw(α) arrives at pv, the type of fα(S, v) changes from Type B to Type C.

10



The angle α′ is defined by the owner w of S and the intersection pv between `(e1) and
e. Since there are at most n owners and at most n intersection points, the number
of such transitions is O(n2).

• Combinatorial description of `(xα) and `(yα) changes while the type of fα(S, v) remains
the same.

– fα(S, v) is of Type A: `(xα) and `(yα) are extended lines of the edges incident to v,
so they do not change as long as the interval type remains the same.

– fα(S, v) is of Type B: `(xα) (and `(yα)) is a tangent between S and R(S, v), where
`(xα) passes through two tangential points p(xα) ∈ CH(S) and q(xα) ∈ CH(R(S, v)).
The point p(xα) can be either a vertex of P or a point of T (α) whereas q(xα) is a
vertex of P . We have three different situations:

∗ See Figure 6(b). While α rotates from α1 to α3, CH(S) remains unchanged. For
α ≤ α2, p(xα) is the vertex u, but p(xα) becomes a point of T (α) for α ≥ α2,
so the combinatorial description of `(xα) changes at α = α2. The direction α2

is determined by the owner of S and the intersection `(q(xα), u) ∩ e. Since e is
fixed for a component S during α1 ≤ α < α3, there are O(n2) directions for each
S and thus O(n3) events in total.

∗ `(xα) can change combinatorially when CH(S) changes combinatorially. See Fig-
ure 6(c). While α rotates from α1 to α3, CH(S) has a new edge e′ on its boundary.
So the combinatorial description of `(xα) at α = α2 has changed. However, this
event is also detected in the component event caused by lid-endpoint changes.
(The direction α2 is defined by a component owner and a vertex, so there are
O(n2) such directions for a single component and thus O(n3) in total.)

∗ `(xα) can change when CH(R(S, v)) changes combinatorially. It is easy to see
that a change of CH(R(S, v)) for a fixed pair (S, v) happens O(n) times, accord-
ing to the directions defined by v and the other vertices in R(S, v). Since there
are O(n2) pairs (S, v), we have O(n3) such events. In addition, we update the
information of R(S, v) and CH(R(S, v)) in C whenever they have changes.

– fα(S, v) is of Type C: a similar analysis as in Type B applies.

• The order of intervals changes in I. This event happens when the endpoints of two
intervals change their relative (cyclic) order. To update the interval system I, we first
delete both intervals from I and then insert two new intervals whose endpoints reflect
the new order. Whenever an interval is inserted or deleted in I (e.g., a new component
causes O(n) insertion of R(S, v) into C and thus O(n) insertion of new intervals into I),
we need to compute all the moments α that the order between the new interval and the
others of I is changed. There are O(n2) intervals in I, so insertion/deletion of an interval
generates O(n2) ordering change moments and we need to push these α into Q. We have
seen that O(n3) insertion or deletion of intervals in I can happen by component events
and the above two interval events, so we may need O(n5) ordering change events in I.

In total, during the whole sweep there are O(n3) operations in C and O(n5) operations in I
and Q.

Overall algorithm. After the preprocessing step, we initialize the data structures I, C and
Q, and push all directions αij combined with the pre-computed information into Q. We set

11



α to be the horizontal direction and compute all types of events for this configuration. While
Q is not empty, we repeat this process: we extract the smallest angle α from Q, and update
the data structures according to the event type of α in O(log2 n) time. After that, we test in
O(1) time if the updated intervals cover the whole angle space. The total number of operations
needed in the whole process is O(n5), so the algorithm runs O(n5 log2 n) time.

This completes the proof of Theorem 2.

4 Monotonicity for k ≥ 3 directions

This section is devoted to the proof of Theorem 3: for fixed k ≥ 3 and given simple polygon P
with n vertices, compute in O(n3k+2) time all sets of k directions for which P is k-monotone.

The general strategy is that we divide the space of all direction k-tuples into cells, where
we can show that in each cell, either all direction k-tuples cover the polygon in this way, or
none of them does. Then we just have to test a sample direction k-tuple in each cell to decide
whether there is some k-tuple that covers the polygon. Our cell decomposition is generated by
O(n3) hyper-surfaces in that space of k-tuples; they divide this k-dimensional space into O(n3k)
cells. By this, we reduce the existence problem of a direction k-tuple covering the polygon to
O(n3k) decision problems, each deciding in O(n2) time if a specific direction k-tuple covers the
polygon. So the total complexity of the algorithms will be O(n3k+2).

We define three types of hyper-surfaces for the subdivision of the k-dimensional space of
direction k-tuples:

• For a ∈ {1, . . . , k}, Sabc is the set of (ϕ1, . . . , ϕk) where the direction ϕa coincides with
the direction of the line through the polygon vertices vb and vc.

• For b, d ∈ {1, . . . , k}, Tabcd is the set of (ϕ1, . . . , ϕk) where the line through va with
direction ϕb intersects the line through vc with direction ϕd in a point on the polygon
boundary.

• For b, d, f ∈ {1, . . . , k}, Rabcdef is the set of (ϕ1, . . . , ϕk) where the line through va with
direction ϕb intersects the line through vc with direction ϕd in a point on the line through
ve with direction ϕf .

There are O(n2k) hyper-surfaces of the first type, O(n2k2) of the second type, and O(n3k3) of
the third type, so for fixed k the total number of surfaces in our arrangement is O(n3).

We now have to show that within each cell of the arrangement, the polygon is either covered
for all (ϕ1, . . . , ϕk), or not covered for any (ϕ1, . . . , ϕk). Suppose that the polygon is covered
for Φ = (ϕ1, . . . , ϕk), and not covered for Ψ = (ψ1, . . . , ψk) in the same cell. Consider any path
from Φ to Ψ. Along this path there is a last stage in which the entire polygon is covered, and
a first point u that will be uncovered. There are several possibilities how a point can become
uncovered. Each boundary of a region covered by a direction is either an edge of the polygon
or a line in that direction through a vertex of the polygon. So the uncovered region around
u must be bounded by lines, which are either polygonal edges or lines in one of the directions
through a vertex of the polygon. We can distinguish the following cases:

• If u is a vertex, then in the moment u becomes uncovered the line through u goes through
another vertex, so the path from Φ to Ψ crosses a surface of the first type.

• If u is a point on an edge of the polygon, and

12



– the region becoming uncovered is bounded by a line parallel to the polygonal edge,
moving away from it, then the path from Φ to Ψ again crossed a surface of the first
type, or

– the region becoming uncovered is bounded by two lines intersecting the polygonal
edge, then in the moment that u becomes uncovered, these two lines intersect each
other on the polygonal boundary, so the path from Φ to Ψ crosses a surface of the
second type.

• If u is an interior point of the polygon, and

– the region becoming uncovered is bounded by two parallel lines moving away from
each other, then the path from Φ to Ψ crosses a surface of the first type, or

– the region becoming uncovered is bounded by three lines, then in the moment that
u became uncovered, these three lines intersect one another in a point, so the path
from Φ to Ψ crosses a surface of the third type.

Therefore it is sufficient to check one sample point from each cell of this arrangement. To
test whether a given k-tuple of directions actually covers a given n-gon, we just construct the
arrangement of all the lines of these directions through all polygon vertices. This arrangement
has O(n2k2) cells and can be constructed in that time, and all potential boundaries of uncovered
regions are among these lines. So we just have to check whether each cell is covered.

This finishes the proof of Theorem 3.

References

[1] P. Bose and M. van Kreveld. Generalizing monotonicity: On recognizing special classes of
polygons and polyhedra by computing nice sweeps, International Journal of Computational
Geometry and its Applications 15(6), 591–608, 2005.

[2] P. Bose, P. Morin, M. Smid and S. Wuhrer. Rotationally Monotone Polygons, Proceedings
of the 18th Canadian Conference on Computational Geometry(2006), 105–108.

[3] S. W. Cheng and R. Janardan. Efficient maintenance of the union of intervals on a line,
with applications, Journal of Algorithms 12, 57–74, 1991.

[4] J. S. Ha, K. H. Yoo and J. K. Hahn. Characterization of polyhedron monotonicity,
Computer-Aided Design 38(1), 48–54, 2006.

[5] J. Hershberger and S. Suri. A pedestrian approach to ray shooting: Shoot a ray, take a
walk. Journal of Algorithms 18, 403–431, 1995.

[6] M. Overmars and J. van Leeuwen. Maintenance of configurations in the plane, Journal of
Computer and System Sciences 23, 166–204, 1981.

[7] F. Preparata and K. Supowit. Testing a simple polygon for monotonicity, Information Pro-
cessing Letters 12(4), 161–164, 1981.

[8] D. Rappaport and A. Rosenbloom. Moldable and castable polygons, Computational Geom-
etry: Theory and Applications 4, 219–233, 1994.

[9] G. T. Toussaint. Movable separability of sets. In Computational Geometry (G. T. Toussaint,
Editor), 335–375, North-Holland, Netherlands, 1985.

13


