
Casting an Object with a Core∗

Hee-Kap Ahn† Sang Won Bae‡ Siu-Wing Cheng§ Kyung-Yong Chwa‡

Abstract

This paper addresses geometric problems in manufacturing objects by casting. In casting,
molten material is poured into the cavity of the cast and allowed to solidify, after which the cast
is removed. The cast has two cast parts to be removed in opposite directions. To manufacture
more complicated objects, the cast may also have a side core to be removed in a direction skewed
to the removal directions for the cast parts. We address the following problem: Given an object
and the removal directions for the cast parts and the side core, can a cast be constructed such
that the cast parts and the side core can be removed in the directions specified without colliding
with the object or each other? We give necessary and sufficient conditions for the problem,
as well as a discrete algorithm to perform the test in O(n3 log n) time for polyhedral objects,
where n is the number of vertices, edges, and facets. If the test result is positive, a cast with
complexity O(n3) can be constructed within the same time bound. We also present an example
to show that a cast may have Ω(n3) complexity in the worst case.

1 Introduction

Casting or injection molding [7, 8, 14, 16] is ubiquitous in the manufacturing industry for producing
consumer products. A cast can be viewed as a box with a cavity inside. Molten material (such
as iron, glass or polymer) is poured into the cavity and allowed to solidify. The cast has two cast
parts and it is convenient to view that the hardened object is taken out by removing the two cast
parts in opposite directions. In reality, one cast part is fixed and the other cast part retracts,
carrying the object with it. Typically, pins slide through tunnels in the retracting cast part and
push the object out of the cavity. In the prevailing technology the ejection direction is opposite
to the retraction direction [7, 8, 14, 16]. Hence, it is equivalent to view that the two cast parts
are removed in opposite directions. This is our assumption throughout this paper unless stated
explicitly otherwise. Non-opposite removal directions are allowed in a few previous works and we
will state this explicitly in the literature survey.

Many common objects, however, cannot be manufactured using two cast parts alone. Additional
pieces, which we refer to as side cores, are needed. For example, consider a coffee mug in Figure 1(a).
Suppose that we place the coffee mug horizontally as in Figure 1(b). The handle of the mug can be

∗Work by Ahn was supported by the Korea Research Foundation Grant funded by the Korean Govern-
ment(MOEHRD) (KRF-2006-331-D00456). Work by Cheng was supported by a Direct Allocation Grant of HKUST
(HKUST DAG04/05.EG21).

†Department of Computer Science and Engineering, POSTECH, Pohang, Korea. Email: heekap@gmail.com.
‡Division of Computer Science, KAIST, Korea. Email: {swbae,kychwa}@tclab.kaist.ac.kr.
§Department of Computer Science and Engineering, HKUST, Hong Kong. Email: scheng@cse.ust.hk.

1



produced by the two cast parts designed to be removed vertically in opposite directions. However,
these two cast parts cannot produce the cavity of the mug, which needs to be shaped by something
that is removed horizontally. Figure 1(b) shows the side core needed to shape the cavity of the mug.
Side cores are used widely to enlarge the class of objects manufacturable by casting [6, 14, 16, 17].
Figure 2 shows schematically the removal of the cast parts and the side core.

(a) (b)

Figure 1: (a) A coffee mug is unattainable using a 2-part cast. (b) By incorporating a side core,
the cavity of the coffee mug can be manufactured.

core

upper part

lower part

Figure 2: The casting process with a side core is illustrated in 2D.

The casting problem is related to the assembly problem in robotics [9]. A mechanical object is
usually made of several components. Thus, it is desirable to automate the assembly process and
compute the movements needed to bring the components together. The casting problem is different
in that a partition of the cast is sought.

There has been a fair amount of work on the case where no side core is allowed. Given the
object and the removal directions for the two cast parts, the object is castable if a cast can be
constructed such that the cast parts can be removed without being blocked by the object or each
other. Kwong [12] reduced the problems of castability testing and cast construction to the hidden
surface removal problem. Ahn et al. [4] gave an O(n log n)-time algorithm for castability testing
and cast construction for a polyhedron with n vertices. Their approach also leads to an O(n4)-
time algorithm for finding all feasible removal directions for the cast parts. Ahn, Cheong and
van Oostrum [3] allowed the removal directions to have an uncertainty α for any α > 0. Given
the removal directions and the uncertainty α, they can test castability and construct the cast in
O(n log n) time. They can also find all feasible removal directions in O(n2 log n/α2) time. Given a
convex polyhedron and the removal directions, Majhi, Gupta and Janardan [13] can compute two
cast parts that meet at the flattest parting line. Bose et al. [5] studied the case of sand casting
in which the partition of the cast into two parts must be done by a plane. They considered both
opposite removal directions and non-opposite removal directions for the two cast parts. Ahn, Cheng
and Cheong [1] removed the restriction of partitioning using a plane, while allowing non-opposite

2



removal directions. They can test the castability and construct the cast in O(n2 log2 n) time for a
given pair of possibly non-opposite removal directions.

In contrast, the algorithmic complexity of allowing for side core(s) is largely unknown. Chen,
Chou and Woo [6] described a heuristic to compute the removal directions for the two cast parts
that minimizes the number of side cores needed. However, the removal directions returned need
not be feasible. Based on the approach of Chen, Chou and Woo, Hui presented exponential time
algorithms to construct a cast [10]. However, there is no guarantee that a feasible cast will be
found if there is one. Ahn et al. [2] proposed a hull operator, reflex-free hull, to define cavities in
polyhedron. The motivation is that the cavities limit the search space for the removal directions
for the cast parts and side cores.

In this paper, we study the casting problem when one side core is allowed. Suppose that the
object and the removal directions for the two cast parts and the side core are given. We present a
necessary and sufficient condition for the object to be castable, assuming that the swept volumes
generated by the removal of the cast parts and the side core are required not to intersect the
object or each other. For a polyhedron of n vertices, we develop an O(n3 log n)-time algorithm for
performing the castability test. A cast of O(n3) complexity can be constructed within the same
time bound. We give an example to show that a cast of Ω(n3) complexity is necessary in the worst
case. In the absence of a side core, the swept volumes generated by the removal of the cast parts
must not intersect the object or each other, in order that the object can be produced using a 2-part
cast [4, 12]. When there is a side core, it is often removed first in practice. So our assumption is
stronger than necessary in this case; for example, see Figure 3. Nevertheless, this paper gives, to

core

removal

direction

x

Figure 3: An object with a small hole in the middle of the vertical wall, and bigger holes on the
top and bottom face of the horizontal leg. It can be produced using a 2-part cast with a side core
if the side core is removed first. Consider a point x in the middle of the hole on the horizontal
leg. It must be removed vertically upward, otherwise it intersects the object. But if we remove x
vertically upward, we run into the swept volume of the side core, which violates our assumption.

the best of our knowledge, the first characterization of castability and the first polynomial time
algorithm for the problem when a side core is allowed.

We provide the basic definitions and notation in Section 2. We prove the characterization
of castability in Section 3. In Section 4 we develop the castability testing and cast construction
algorithm. We give some experimental results in Section 5. We present a lower bound construction

3



in Section 6 that shows that the cast produced has optimal complexity in the worst-case. We
conclude in Section 7.

2 Preliminaries

Let A be a subset of R3. We say that A is open if for any point x ∈ A, A contains some ball
centered at x with positive radius. We say that A is closed if its complement is open. For all points
x ∈ R3, x is a boundary point of A, if any ball centered at x with positive radius intersects both
A and its complement. The boundary of A, denoted by bd(A), is the set of boundary points. The
interior of A, int(A), is A \ bd(A). Note that int(A) must be open.

An object is monotone in direction d if for any line ` parallel to d , the intersection between `
and the object is a single interval.

The Minkowski sum of two sets S1 ⊂ R3 and S2 ⊂ R3 is defined as S1 ⊕ S2 = {x + y : x ∈
S1, y ∈ S2}, where x and y are treated as position vectors and x + y is their vector sum.

We assume that the outer shape of the cast equals a box denoted by B. The cavity of B has
the shape of the object Q to be manufactured. We assume that Q is an open set so that the cast
B \ Q is a closed set. The box B is large enough so that Q is contained strictly in its interior. We
use dp and −dp to denote the given removal directions for the two cast parts, and dc to denote the
given removal direction for the side core.

We call the cast part to be removed in direction dp the red cast part and denote it by Cr. We
call the other cast part the blue cast part and denote it by Cb. We denote the side core by Cc. The
cast parts and the side core are required to be connected subsets of B. Together they form the cast,
i.e., B \Q = Cr ∪Cb ∪Cc. The interior of the two cast parts and the side core are mutually disjoint.

Let γp and γc denote the rays emitting from the origin towards directions dp and dc, respectively.
Given the object Q and the directions dp and dc, we say that Q is castable if B\Q can be partitioned
into Cr, Cb and Cc such that Cr ⊕ γp, Cb ⊕−γp, and Cc ⊕ γc do not intersect Q or each other.

3 The characterization of castability

In this section we characterize the castability of Q given the directions dp and dc. The object Q
needs not be polyhedral. We first introduce some definitions.

Consider the illumination of R3 by light sources at infinity in directions dp and −dp, treating Q
as opaque. We call the subset of non-illuminated points in B\Q the object shadow. That is, for any
point x in the object shadow, the rays emitting from x towards dp and −dp intersect Q. We denote
the object shadow by Vobj (See Figure 4(a).) We define Vc

obj = (Vobj ⊕ γc) \ Q, as in Figure 4(b).
Note that Vobj ⊂ B ∩ Vc

obj. The object shadow is the subset of B \ Q that cannot be removed in
directions dp or −dp. Thus, Vobj should be removed in direction dc and so we are interested in Vc

obj.
Consider the illumination of R3 by light sources at infinity in directions dp and −dp again. We
treat both Q and B ∩Vc

obj as opaque and this yields a larger set of non-illuminated points. We call
the subset of non-illuminated points in B \ (Q∪Vc

obj) the extended shadow (See Figure 4(c).) That
is, for any point x in the extended shadow, the rays emitting from x towards dp and −dp intersect
Q ∪ Vc

obj. We denote the extended shadow by Vext. We define Vc
ext = (Vext ⊕ γc) \ (Q ∪ Vc

obj). Note

4



(a) (b) (c)

dc
B

Vobj dp

QQ Q

Figure 4: Some definitions are illustrated in 2D: (a) the set Vobj, (b) the swept volume Vc
obj =

(Vobj ⊕ γc) \ Q, and (c) the extended shadow Vext (the darker gray region.)

that Vext ⊂ B ∩ Vc
ext. By definition, Q ∪ Vc

obj forbids the points in Vext to be removed in directions
dp or −dp. So Vext should be removed in direction dc. This explains why we are interested in Vc

ext.

Although the construction of Vc
obj can be viewed as sweeping Vobj in dc, Vc

obj needs not be
monotone in direction dc because Vc

obj does not include Q. Similarly, Vc
ext needs not be monotone

in dc.

3.1 Technical lemmas

We need three technical lemmas in proving the characterization.

Lemma 1 Assume that dp is the upward vertical direction. Let x be a point in Vc
ext. There is a

point y directly above or below x such that y ∈ Q ∪ Vc
obj and int(xy) ⊂ Q ∪ Vc

obj ∪ Vc
ext.

Proof. Since x ∈ Vc
ext, there is a point z ∈ Vext such that x ∈ z ⊕ γc. Since z ∈ Vext, the two rays

z ⊕ γp and z ⊕ −γp intersect Q ∪ Vc
obj. One of these two rays must intersect Vc

obj; otherwise, both
rays intersect Q and z would be in Vobj instead of Vext. Without loss of generality, let z′ be the
first point in Vc

obj hit by z ⊕ γp. It follows that int(zz′) ⊂ Vext.

Because z′ ∈ Vc
obj, (z′ ⊕ γc) \ Q ⊂ Vc

obj. So there is a point y directly above x such that xy is a
translated copy of zz′ and y ∈ Q∪ Vc

obj. Because int(zz′) ⊂ Vext, (int(zz′)⊕ γc) \ (Q∪Vc
obj) ⊂ Vc

ext.
It follows that int(xy) ⊂ Q ∪ Vc

obj ∪ Vc
ext.

Lemma 1 is needed to prove the following result, which says that Q∪Vc
obj ∪Vc

ext is monotone in
direction dp. Then, it follows from the result of Ahn et al. [4] that B ∩ (Q∪ Vc

obj ∪ Vc
ext) is castable

using a 2-part cast. We will show later that these two cast parts are also the cast parts for Q.

Lemma 2 Q∪ Vc
obj ∪ Vc

ext is monotone in direction dp.

Proof. Without loss of generality, assume that dp is the vertical upward direction. Suppose that
the lemma is false. Then there is a vertical line ` that intersects Q∪ Vc

obj ∪ Vc
ext in two consecutive

disjoint intervals. Let s1 denote the upper interval and let s3 denote the lower interval. Let s2 be
the interval in ` \ (Q∪ Vc

obj ∪ Vc
ext) between s1 and s3.

It is impossible that both s1 and s3 contain points inside Q ∪ Vc
obj. Otherwise, s2 ⊂ Vext,

contradicting the fact that s2 lies outside Q ∪ Vc
obj ∪ Vc

ext. So s1 or s3, say s1, lies inside Vc
ext.

5



By Lemma 1, there is a point y directly above or below s1 such that y ∈ Q ∪ Vc
obj and int(L) ⊂

Q ∪ Vc
obj ∪ Vc

ext, where L is the shortest line segment connecting s1 and y. There are two cases to
consider and we derive a contradiction in each case.

Case 1: y lies below s1. Since y ∈ Q ∪ Vc
obj, y must lie below s2. But then s2 ⊆ int(L) ⊂

Q ∪ Vc
obj ∪ Vc

ext. This is a contradiction because s2 lies outside Q∪ Vc
obj ∪ Vc

ext.

Case 2: y lies above s1. Consider the possibility that s3 contains a point z in Q ∪ Vc
obj. In this

case any upward (resp. downward) ray emitting from any point in s2 must intersect Q ∪ Vc
obj at

y (resp. z). But then s2 ⊂ Vext, contradicting the fact that s2 lies outside Q ∪ Vc
obj ∪ Vc

ext. The
remaining possibility is that s3 lies inside Vc

ext. By Lemma 1, there is a point y′ directly above
or below s3 such that y′ ∈ Q ∪ Vc

obj and int(L′) ⊂ Q ∪ Vc
obj ∪ Vc

ext, where L′ is the shortest line
segment containing s3 and y′. If y′ lies above s3, then y′ must lie above s2 as well. It follows
that s2 ⊆ int(L′) ⊂ Q ∪ Vc

obj ∪ Vc
ext, a contradiction. If y′ lies below s3, then any upward (resp.

downward) ray emitting from any point in s2 must intersect Q ∪ Vc
obj at y (resp. y′). But then

s2 ⊂ Vext, a contradiction again.

Lemma 2 gives us a way to construct the two cast parts. It also implies that the side core
should occupy the region B ∩ (Vc

obj ∪Vc
ext) so that the remaining cavity is exactly Q. The following

result shows that the side core indeed includes B ∩ (Vc
obj ∪ Vc

ext).

Lemma 3 Given dp and dc, if Q is castable, then B ∩ Vc
obj ⊆ Cc and B ∩ Vc

ext ⊆ Cc.

Proof. For any point x ∈ Vobj, both x ⊕ γp and x ⊕ −γp intersect Q, and so x cannot belong to
Cr or Cb. Thus, Vobj ⊆ Cc. Since Q is castable, Cc ⊕ γc does not intersect Q, Cr, or Cb. This implies
that B ∩ Vc

obj ⊆ Cc.

Let x be a point in Vext. Both x ⊕ γp and x ⊕ −γp intersect Q ∪ Vc
obj by definition. We have

already shown that Vobj ⊆ Cc. Thus, both x⊕ γp and x⊕−γp intersect Q∪ (Cc ⊕ γc). If x belongs
to Cr or Cb, Cr ⊕ γp or Cb ⊕ −γp would intersect Q ∪ (Cc ⊕ γc), contradicting the castability of Q.
So x belongs to Cc, which implies that Vext ⊆ Cc. Again, because Q is castable, Cc ⊕ γc does not
intersect Q, Cr, or Cb. Hence, B ∩ Vc

ext ⊆ Cc.

3.2 Characterization

We are ready to prove the necessary and sufficient condition for which an object is castable with
respect to some given removal directions for the two cast parts and the side core.

Theorem 4 Given dp and dc, Q is castable if and only if Vc
obj ∪ Vc

ext is monotone in dc.

Proof. Suppose that Q is castable. Assume to the contrary that Vc
obj ∪Vc

ext is not monotone in dc.
Then, there is a line parallel to dc that intersects Vc

obj∪Vc
ext in two disjoint intervals. It follows that

there exists a point x in Vobj ∪ Vext such that x⊕ γc intersects Vc
obj ∪ Vc

ext in two disjoint intervals.
If x ∈ Vobj, then x ⊕ γc ⊂ Q ∪ Vc

obj; if x ∈ Vext, then x ⊕ γc ⊂ Q ∪ Vc
obj ∪ Vc

ext. So in either case
x ⊕ γc must intersect Q in order that x ⊕ γc intersects Vc

obj ∪ Vc
ext in two disjoint intervals. Since

Q is castable, Cc ⊕ γc avoids Q. Because x ∈ Vobj ∪ Vext ⊂ B ∩ (Vc
obj ∪ Vc

ext) which is a subset of
Cc by Lemma 3, we conclude that x ⊕ γc avoids Q, a contradiction. This proves the necessity of
Vc

obj ∪ Vc
ext being monotone in dc.

6



We prove the sufficiency by showing the construction of a cast for Q. Ahn et al. [4] proved that
an object is castable using two cast parts (without any side core) with removal directions d and −d
if and only if the object is monotone in direction d . Thus, Lemma 2 implies that B∩(Q∪Vc

obj∪Vc
ext)

is castable using a 2-part cast with removal directions dp and −dp. We use the construction by
Ahn et. al [4] to build Cr and Cb with the necessary modification for handling the core. Without
loss of generality, assume that dp is the upward vertical direction, dc makes an angle of at most
π/2 with dp, and the horizontal projection of dc aligns with the positive x-axis.

First, we make B sufficiently large and position Q inside B so that Vc
obj ∪ Vc

ext intersects the
interior of one vertical side facet of B only. Let S be that vertical side facet of B. Thicken S slightly
to form a slab S+. Let T be the top horizontal facet of B. Thicken T slightly to form one slab T+.
We can almost make B ∩ (Vc

obj ∪ Vc
ext) the side core, but it may be disconnected. So we add S+ to

connect the components in B ∩ (Vc
obj ∪ Vc

ext) to form the side core Cc. Next, we follow the method
in [4] to construct Cr ∪ Cb as a 2-part cast for B ∩ (Q ∪ Vc

obj ∪ Vc
ext). Subtract Q ∪ Vc

obj ∪ Vc
ext from

(Q ∪ Vc
obj ∪ Vc

ext)⊕ γp. Intersect the resulting shape with B and denote the intersection by X . We
can almost make X the red cast part, but X may be disconnected. So we add T+ \ S+ to connect
the components of X to form one red cast part Cr. Lastly, we construct the blue cast part Cb as
B \ (Q∪ Cr ∪ Cc).

We argue that Cr ⊕ γp, Cb ⊕−γp, and Cc ⊕ γc do not intersect Q or each other. Since B ∩ (Q∪
Vc

obj∪Vc
ext) is castable using the 2-part cast Cr ∪Cb, Cr⊕γp and Cb⊕−γp do not intersect Q or each

other. Since Vc
obj ∪ Vc

ext is monotone in dc by assumption, (Vc
obj ∪ Vc

ext) ⊕ γc does not intersect Q.
Also, S+ ⊕ γc avoids Q by construction. So Cc ⊕ γc does not intersect Q. It remains to show that
Cc ⊕ γc avoids Cr ⊕ γp and Cb ⊕−γp.

Assume to the contrary that Cc⊕γc intersects Cr⊕γp or Cb⊕−γp at a point z. By construction,
S+⊕γc cannot intersect Cr⊕γp or Cb⊕−γp. So (Vc

obj∪Vc
ext)⊕γc intersects Cr⊕γp or Cb⊕−γp at z.

Since Vc
obj∪Vc

ext is monotone in dc by assumption, Vc
obj∪Vc

ext = (Vc
obj∪Vc

ext)⊕γc. So z lies in Vc
obj∪Vc

ext.
By construction, S is the only (vertical) facet of B intersected by Vc

obj∪Vc
ext. If z lies outside B, the

support plane of S would separate z from Cr⊕γp and Cb⊕−γp. Therefore, z lies in B, which implies
that z ∈ B∩ (Vc

obj∪Vc
ext) ⊂ B∩ (Q∪Vc

obj∪Vc
ext). However, this means that Cr⊕γp or Cb⊕−γp inter-

sects B∩(Q∪Vc
obj∪Vc

ext), contradicting the fact that Cr∪Cb is a 2-part cast for B∩(Q∪Vc
obj∪Vc

ext).

If we are given a CAD system that is equipped with visibility computation, volume sweeping,
and monotonicity checking operation, the characterization in Theorem 4 can be used directly to
check the castability of any object. The proof also yields the construction of the cast.

4 An algorithm for polyhedra

We apply Theorem 4 to check the castability of a polyhedron. The goal is to obtain a discrete
algorithm whose running time depends on the combinatorial complexity of the polyhedron. To be
consistent with the previous section, our object is the interior of the polyhedron and we denote it
by P. The combinatorial complexity n of P is the number of vertices, edges, and facets in bd(P).
We present an O(n3 log n)-time algorithm for testing the castability of P given dp and dc. During
the verification, we compute Vc

obj ∪ Vc
ext, from which the cast can be easily obtained as mentioned

in the proof of Theorem 4.

7



Throughout this section, we assume that dp is the upward vertical direction. We also make two
assumptions about non-degeneracy. First, no facet in bd(P) is vertical. Second, the vertical pro-
jections of two polyhedron edges are either disjoint or they cross each other. These non-degeneracy
assumptions simplify the presentation and they can be removed by a more detailed analysis. We
call a facet of P an up-facet if its outward normal makes an acute angle with dp, and a down-facet,
otherwise.

Let H be a horizontal plane below P. We project all facets of P onto H. The projections may
intersect each other and we insert vertices at the crossings. The resulting subdivision has O(n2)
size and we denote it by M. We associate with each cell of M the set of polyhedron facets whose
projections cover it. We can compute M in O(n2 log n) time using a plane-sweep algorithm. The
association of polyhedron facets to cells can also be done in O(n3 log n) time during the plane sweep.
After computing M, we test whether Vc

obj ∪ Vc
ext is monotone in dc as follows (see Theorem 4).

We partition H into 2D slabs by taking vertical planes parallel to dc through all vertices of M.
Since there are O(n2) vertices in M and a vertical plane parallel to dc intersects O(n) edges of
P, there are O(n3) intersections in total. So the overlay of M and the slabs can be computed in
O(n3 log n) time using a plane-sweep algorithm.

Consider a slab Σ on H. By the construction, Σ contains no vertex in its interior and is
partitioned into O(n) regions by the edges of M. Let d be the projection of dc on H. The regions
in Σ are linearly ordered in direction d and we label them by ∆0, ∆1, . . . in this order. Notice that
∆0 is unbounded in direction −d and the last region is unbounded in direction d . We use ζi to
denote the boundary edge between ∆i−1 and ∆i. For each region ∆i, we keep the set of polyhedron
facets whose projections cover it. We cannot do this straightforwardly. Otherwise, since there are
O(n3) regions over all slabs and we may keep O(n) polyhedron facets per region, the total time and
space needed would be O(n4). The key observation is that if we walk from ∆0 along Σ in direction
d and record the changes in the set of facets whenever we cross a boundary edge ζi, then the total
number of changes in Σ is O(n). Therefore, we can use a persistent search tree [15] to store the
sets of polyhedron facets for all regions in Σ. This takes O(n log n) time and O(n) space to build
per slab. Hence, it takes a total of O(n3 log n) time and O(n3) space.

For each 2D slab Σ on H, we employ an inductive strategy for testing the monotonicity of
Vc

obj ∪ Vc
ext in dc within the unbounded 3D slab Σ × [∞,−∞]. Each region ∆i in Σ gives rise to

a trapezoidal pillar ∆i × [∞,−∞]. We scan these trapezoidal pillars ∆i × [∞,−∞] in the order
of i = 0, 1, 2, . . .. We first discuss the data structures needed. Consider a boundary ζi. Take the
vertical strip Hi through ζi. We translate Hi slightly into ∆i−1 (resp. ∆i) and denote the perturbed
strip by H−

i (resp. H+
i ). Let I−i denote the intersection H−

i ∩ (Vc
obj ∪ Vc

ext) and let I+
i denote the

intersection H+
i ∩ (Vc

obj ∪ Vc
ext). Both I−i and I+

i consist of O(n) trapezoids. Let τ be a trapezoid
in I−i or I+

i . We call the upper and lower sides of τ its ceiling and floor, respectively. The ceiling
of τ lies on a boundary facet of Vc

obj ∪Vc
ext. We call this boundary facet the ceiling-facet of τ . This

ceiling-facet may lie within a down-facet in bd(P) or it may be parallel to dc and not contained
in bd(P). (The latter kind of boundary facets are generated by the Minkowski sum of Vobj or Vext

with γc.) Therefore, it suffices to store a polyhedron facet or a plane parallel to dc to represent the
ceiling-facet. We denote this representation by fu(τ). Similarly, the floor of τ lies on a boundary
facet of Vc

obj ∪ Vc
ext. This boundary facet may lie within an up-facet in bd(P) or it may be parallel

to dc and not contained in bd(P). We call it the floor-facet of τ and denote its representation by
f`(τ).

8



We incrementally grow a volume Vc during the scanning. The volume Vc is initially empty. If
P is castable, Vc will be equal to (Vc

obj ∪ Vc
ext) ∩ (Σ × [∞,−∞]) in the end. Consider the event

that we cross the boundary ζi during the scanning. Suppose that the portion of Vc
obj ∪ Vc

ext within⋃i−1
j=0 ∆j × [∞,−∞] is monotone in dc. We first check whether the portion of Vc

obj ∪ Vc
ext inside

∆i × [∞,−∞] will change the monotonicity. Later, we discuss how to grow Vc if the monotonicity
is preserved. Note that there is a difference in the sets of polyhedron facets whose projections cover
∆i−1 and ∆i. There are several cases.

1. For each trapezoid τ ∈ I−i , neither fu(τ) nor f`(τ) is about to vanish above ζi. Let e be the
polyhedron edge e that projects vertically onto ζi.

(a) I−i is empty. Let f and f ′ be the two polyhedron facets incident to e. If the vertical
projection of f or f ′ covers ∆i−1, there is nothing to be done. Otherwise, the vertical
projections of f and f ′ cover ∆i but not ∆i−1. Assume that f is higher than f ′ locally
around e. If f is an up-facet, there is nothing to be done. Suppose that f is a down-facet.
So f and f ′ bound a subset of Vobj locally around e above ∆i. If the outward normal of
f or f ′ makes an obtuse angle with dc, we abort and report that P is not castable. The
reason is that f or f ′ must intersect the Minkowski sum of this subset of Vobj around e
with γc. So Vc

obj ∪Vc
ext is not monotone in dc and P is not castable by Theorem 4. If the

outward normals of f and f ′ make non-obtuse angles with dc, we insert a new trapezoid
τ into I+

i . We set fu(τ) = f and f`(τ) = f ′.

(b) I−i is non-empty. If the vertical projection of a polyhedron facet incident to e covers
∆i−1, there is nothing to be done. Suppose that the vertical projections of the two
polyhedron facets incident to e cover ∆i but not ∆i−1. Consider the projection e− of
e in direction −dc onto H−

i . Since P ∪ Vc
obj ∪ Vc

ext is monotone in dp by Lemma 2, the
space between two trapezoids in I−i is the polyhedron interior. Thus the projection e−

cannot lie between two trapezoids in I−i . So there are only two cases:

i. The projection e− cuts across the interior of a trapezoid τ ∈ I−i . In this case, we
abort and report that P is not castable. The reason is that a polyhedron facet
incident to e must intersect τ ⊕ γc, and so (τ ⊕ γc) \ P is not monotone in dc. It
follows that Vc

obj∪Vc
ext is not monotone in dc and so P is not castable by Theorem 4.

ii. The projection e− lies above all trapezoids in I−i . The case that e− lies below all
trapezoids can be handled symmetrically. Let f be the down-facet incident to e.
If we project e vertically downward, the projection either lies on some up-facet f ′,
or a boundary facet of Vc

obj ∪ Vc
ext that is parallel to dc. Let e′ denote this vertical

downward projection of e.
A. If e′ lies on an up-facet f ′, e and e′ define a new trapezoid τ that lies above all

trapezoids in I−i . We set fu(τ) = f and f`(τ) = f ′. I+
i contains all trapezoids

in I−i as well as τ .
B. If e′ lies on a boundary facet of Vc

obj ∪Vc
ext that is parallel to dc, then e′ actually

lies on fu(τ) where τ is the topmost trapezoid in I−i . Thus, we should grow τ
upward and set fu(τ) = f . I+

i contains this updated trapezoid τ and the other
trapezoids in I−i .

9



After the above update, we check the outward normal of f . If this normal makes an
obtuse angle with dc, then f intersects τ ⊕ γc and we should abort and conclude as
before that P is not castable.

e′

e

Hi

dc

f

f ′e′

e

Hi

case 1(b)iiA case 1(b)iiB

f

e

Hi

f e

Hi

dc

fu(τ)

case 2(b)iiA case 2(b)iiB

τ

τ ′

τ

f

τ

Figure 5: Two cases of 1(b)ii and two cases of 2(b)ii. The gray trapezoids are subsets of Hi∩(Vc
obj∪

Vc
ext).

2. For some trapezoid τ ∈ I−i , fu(τ) or f`(τ) is about to vanish above ζi. Notice that if the ceiling
or floor facet of τ is a boundary facet of Vc

obj∪Vc
ext, it cannot be intercepted by the interior of

a polyhedron facet in direction dc. Otherwise, P ∪ Vc
obj ∪ Vc

ext would not be monotone in dp,
contradicting Lemma 2. Therefore, the vanishing fu(τ) or f`(τ) must end at the polyhedron
edge e that projects vertically onto ζi. There are two cases:

(a) The vanishing fu(τ) or f`(τ) is not a polyhedron facet incident to e. In this case the
vanishing fu(τ) or f`(τ) is intercepted by the interior of P at e. This means that Vc

obj∪Vc
ext

is not monotone in dc and so P is not castable as discussed before.

(b) The vanishing fu(τ) or f`(τ) is a polyhedron facet incident to e. There are two cases:

i. The polyhedron facets incident to e lie locally on different sides of the vertical plane
through ζi. Let f be the facet incident to e that lies locally in direction dc from e.

10



In this case, the vanishing fu(τ) or f`(τ) should be replaced by f . However, if the
outward normal of f makes an obtuse angle with dc, then f intersects τ ⊕ γc and
we should abort as P is not castable.

ii. Otherwise, both incident facets of e lie locally in direction −dc from e. There is no
change in monotonicity status, but we need to perform update as follows. Let f be
the vanishing fu(τ) or f`(τ) of τ . There are two cases:
A. There are trapezoids in I−i that lie above and below f . Clearly, τ is one of them.

Let τ ′ be the other trapezoid. Then fu(τ ′) or f`(τ ′) is about to vanish above ζi

too. In this case, we should merge τ and τ ′ into one trapezoid. The ceiling-facet
and floor-facet of this merged trapezoid are the non-vanishing ceiling-facet and
floor-facet of τ and τ ′. I+

i contains this merged trapezoid and the trapezoids in
I−i other than τ and τ ′.

B. All trapezoids in I−i lie on one side of f . Assume that τ is the topmost trapezoid
in I−i . The other case can be handled symmetrically. Then f = fu(τ). It means
that we are about to sweep the shadow volume below f and bounded by τ into
the space above ∆i. Thus, we should set fu(τ) to be the plane that passes
through e and is parallel to dc. I+

i contains this updated trapezoid τ and the
other trapezoids in I−i .

By representing each trapezoid in I−i combinatorially by its ceiling-facet and floor-facet, the
above description tells us how to update I−i combinatorially to produce I+

i . Notice that I+
i will

be treated as I−i+1 when we are about to cross the boundary ζi+1 in the future. By storing the
trapezoids in I−i in a balanced binary search tree, the update at ζi can be performed in O(log n)
time. Since there are O(n) regions in Σ, scanning Σ takes O(n log n) time. Summing over all 2D
slabs on H gives a total running time of O(n3 log n).

What about growing Vc into ∆i× [∞,−∞]? After the update, for each trapezoid τ ∈ I+
i , fu(τ)

and f`(τ) cut ∆i × [∞,−∞] into two unbounded solids and one bounded solid Bτ . Conceptually,
we can grow Vc by attaching Bτ for each trapezoid τ ∈ I+

i , but this is too consuming. Observe
that if I+

i merely inherits a trapezoid τ from I−i , there is no hurry to attach Bτ right now. Instead,
we wait until ζj for the smallest j > i such that I+

j does not inherit τ from I−j−1. Then fu(τ) and
f`(τ) cut R × [∞,−∞] into two unbounded solids and one bounded solid Sτ , where R is the area
within Σ bounded by ζi and ζj . We attach Sτ to grow Vc. By adopting this strategy, we spend
O(1) time to grow Vc when we cross a region boundary. Hence, we spend a total of O(n3) time
to construct Vc

obj ∪ Vc
ext. Once Vc

obj ∪ Vc
ext is available, we can construct the cast in O(n3) time as

explained in the proof of Theorem 4.

Theorem 5 Given dp and dc, the castability of a polyhedron with size n can be determined in
O(n3 log n) time and O(n3) space. If castable, the cast can be constructed in the same time and
space bounds.

5 Experimental results

We developed a preliminary implementation of the algorithm of Theorem 5. Figure 6 shows the
output of our implementation on some polyhedra: the direction dp is the upward vertical direction

11



Figure 6: Objects and their boundary partitions into three groups by the implementation of our
algorithm. The first two are artificial objects. The next three are a part of a camera body, a screw,
and a wall bracket in order.

12



and the direction dc is the leftward direction. In the figure, the boundary of each object is parti-
tioned into three groups depending on which cast part they belong to. For the ease of visualization,
each boundary group is translated slightly in its corresponding removal direction.

6 Worst-case example

We present a lower bound construction showing that a castable polyhedron of size n can require
a cast of Ω(n3) size. Thus the space complexity in Theorem 5 is worst-case optimal and the time
complexity of our algorithm is at most a log n factor off the worst-case optimum. Throughout this
section, we assume that dp is the upward vertical direction and dc is the leftward direction.

Figure 7: The lower bound example in a perspective view.

Figure 7 shows our lower bound construction. The polyhedron consists of two parts: the upper
part has four horizontal legs in a staircase and three slanted legs sitting on a horizontal leg. The
lower part is an almost identical copy of the upper part, except that it has three small holes as
shown in the figure. The upper hole can only be covered by the red cast part to be removed
vertically upward, and the other two holes can only be covered each by the side core and the blue
cast part. Figure 8(a) shows the front view (when we look at Figure 7 from the left) and the top
view of the polyhedron P. In both projections, all three horizontal legs cross the other three slanted
legs in the upper part as well as in the lower part.

Clearly, the polyhedron is castable with respect to the given directions dp and dc. We argue
that the cast has Ω(n3) size. Imagine that we take a plane h parallel to dp and dc, and sweep P
with h in the direction orthogonal to h. During the sweep, the cross-section P ∩h is 2-part castable
(in 2D) with parting direction dp, except when h intersects a volume in Vobj. When this happens,
P ∩ h is castable in direction dp if we add a side core to be removed in direction dc. Figure 8(b)
shows two cross-sections during the sweep. The left and right pictures in Figure 8(b) show the
cross-section at positions a and b, respectively, shown in Figure 8(a). In the left cross section, let x

13



front view

a b a b

top view

~dc

~dp

(a)

(b)

x

y

Figure 8: (a) A top view and a side view of the lower bound construction. (b) Two cross sections
along a (left) and b (right). The only way to remove x (resp. y) is translating it in dp (resp. dc).

be a point in B\P, lying in between a horizontal leg and a slanted leg in direction dc and above the
slanted leg. The only way to remove x is translating it in dp, which means that the set of points
in B \ P hit by the ray from x in direction dp to infinity must belong to Cr. Now let y be a point
in Vobj in the right cross section. Analogously, the set of points in B \ P hit by the ray from y in
direction dc to infinity must belong to Vc

obj and hence Cc. In addition, the set of points in B \ P
that lies in between the ray and P in direction dp belong to Cc since these points belong to the set
Vext by definition. While we sweep P with h, these two kinds of cross sections appear alternately.

We put Θ(n) horizontal legs and Θ(n) slanted legs in both the upper and the lower parts. In
the upper part, each slanted leg must be in contact with both Cr and Cc. Moreover, the contacts
with Cr and Cc alternate Θ(n) times along the slanted leg. As a result, the slanted legs in the upper
part have a total of Θ(n2) contacts with Cc. These contacts sweep in direction dc and generate
Θ(n2) swept volumes. All these swept volumes belong to Cc. The merging of any two such swept
volumes is forbidden by the alternate appearances of the left cross-section in Figure 8(b); otherwise,
some upward vertical ray (which lies inside Cr) would block the removal of Cc. Each swept volume
projects vertically and produces a shadow on each horizontal leg that lies below it. Thus, the total
complexity of Cc is Ω(n3).

14



7 Conclusion

Given the removal directions for the two cast parts and the side core, we presented a characterization
of the castability of an object, assuming that the swept volumes generated by the cast parts and
the side core are required not to intersect the object or each other. Based on this characterization,
we developed an O(n3 log n)-time and O(n3)-space algorithm for testing a polyhedron of size n.
We presented a lower bound construction to show that our cast complexity is worst-case optimal.
Further research is needed to handle more than one core and to allow the core(s) to be removed
first. Other interesting research problems include minimizing the complexity of the cast, finding all
feasible removal directions for the cast parts and the side core, as well as allowing the cast parts to
be removed in non-opposite directions.

Acknowledgment. We thank the anonymous referees for useful comments that helped to im-
prove the presentation of the paper.

References

[1] H.K. Ahn, S.W. Cheng, and O. Cheong. Casting with skewed ejection direction. In Algorith-
mica, 44(4):325–342, 2006.

[2] H.K. Ahn, S.W. Cheng, O. Cheong, and J. Snoeyink. The reflex-free hull. International
Journal of Computational Geometry and Applications, 14(6):453–474, 2004.

[3] H.K. Ahn, O. Cheong, and R. van Oostrum. Casting a polyhedron with directional uncertainty.
Computational Geometry: Theory and Applications, 26(2):129–141, 2003.

[4] H.K. Ahn, M. de Berg, P. Bose, S.W. Cheng, D. Halperin, J. Matoušek, and O. Schwarzkopf.
Separating an object from its cast. Computer-Aided Design, 34:547–559, 2002.

[5] P. Bose, D. Bremner, and M. van Kreveld. Determining the castability of simple polyhedra.
Algorithmica, 19:84–113, 1997.

[6] L.L. Chen, S.Y. Chou, and T.C. Woo. Parting directions for mould and die design. Computer-
Aided Design, 25:762–768, 1993.

[7] R. Elliot. Cast Iron Technology. Butterworths, London, 1988.

[8] H. Gastrow. Injection Molds. Hanser Publishers, 1983.

[9] D. Halperin, L. Kavraki, and J.-C. Latombe. Robot Algorithms. In CRC Algorithms and
Theory of Computation Handbook, (eds. M. Attalah), CRC Press, 1999.

[10] K. Hui. Geometric aspects of mouldability of parts. Computer Aided Design, 29(3):197–208,
1997.

[11] K.C. Hui and S.T. Tan. Mould design with sweep operations—a heuristic search approach.
Computer-Aided Design, 24:81–91, 1992.

15



[12] K. K. Kwong. Computer-aided parting line and parting surface generation in mould design.
PhD thesis, The University of Hong Kong, Hong Kong, 1992.

[13] J. Majhi, P. Gupta, and R. Janardan. Computing a flattest, undercut-free parting line for a
convex polyhedron, with application to mold design. Computational Geometry: Theory and
Applications, 13:229–252, 1999.

[14] W.I. Pribble. Molds for reaction injection, structural foam and expandable styrene molding.
In J.H. DuBois and W.I. Pribble, editors, Plastics Mold Engineering Handbook. Van Nostrand
Reinhold Company, New York, 1987.

[15] N. Sarnak and R.E. Tarjan. Planar point location using persistent search trees. Communica-
tions of the ACM, 29:669–679, 1986.

[16] C.F. Walton and T.J. Opar, editors. Iron Castings Handbook. Iron casting society, Inc., 1981.

[17] E. C. Zuppann. Castings made in sand molds. In J. G. Bralla, editor, Handbook of Product
Design for Manufacturing, pages 5.3–5.22. McGraw-Hill, New York, 1986.

16


